
1

SQL Workbench/J User's Manual

Table of Contents
1. General Information ... 7

1.1. Program version ... 7
1.2. Feedback and support .. 7
1.3. Credits and thanks .. 7
1.4. Third party components ... 7

2. Software license .. 9
2.1. Definitions ... 9
2.2. Grant of Copyright License .. 9
2.3. Restrictions (deviation of the Apache License) ... 10
2.4. Grant of Patent License .. 10
2.5. Redistribution ... 10
2.6. Submission of Contributions .. 11
2.7. Trademarks .. 11
2.8. Disclaimer of Warranty. ... 11
2.9. Limitation of Liability .. 11
2.10. Accepting Warranty or Additional Liability .. 11

3. Change log ... 12
4. Installing and starting SQL Workbench/J ... 13

4.1. Pre-requisites .. 13
4.2. First time installation ... 13
4.3. Upgrade installation ... 13
4.4. Starting the program from the commandline ... 13
4.5. Starting the program using the shell script ... 14
4.6. Starting the program using the Windows® launcher ... 14
4.7. Configuration directory .. 15
4.8. Copying an installation ... 16
4.9. Increasing the memory available to the application .. 16

5. Command line parameters ... 17
5.1. Specify the directory for configuration settings ... 17
5.2. Specify a base directory for JDBC driver libraries ... 17
5.3. Specify the file containing connection profiles .. 17
5.4. Defining variables ... 18
5.5. Prevent updating the .settings file ... 18
5.6. Connect using a pre-defined connection profile ... 18
5.7. Connect without a profile ... 19

6. JDBC Drivers ... 22
6.1. Configuring JDBC drivers .. 22
6.2. Specifying a library directory .. 23
6.3. Popular JDBC drivers .. 23

7. Connecting to the database .. 25
7.1. Connection profiles .. 25
7.2. Managing profile groups ... 25
7.3. JDBC related profile settings ... 26
7.4. PostgreSQL connections ... 27
7.5. Extended properties for the JDBC driver ... 27
7.6. SQL Workbench/J specific settings ... 27
7.7. Connect to Oracle with SYSDBA privilege .. 32
7.8. Using the quick filter ... 32

8. Using workspaces .. 34

SQL Workbench/J User's Manual

2

8.1. Overview ... 34
8.2. Creating a copy of the current workspace .. 34
8.3. Load a different workspace ... 34
8.4. Workspace and external files ... 35
8.5. Workspace variables .. 35

9. Editing SQL Statements .. 36
9.1. Editing files ... 36
9.2. Code completion ... 36
9.3. Show hints for INSERT statements .. 37
9.4. Customizing keyword highlighting ... 37
9.5. Reformat SQL .. 37
9.6. Create SQL value lists ... 38
9.7. Programming related editor functions .. 39

10. Working with bookmarks .. 42
10.1. Defining bookmarks ... 42
10.2. Jumping to a bookmark .. 42
10.3. Configuring the display of the bookmark list .. 42

11. Creating stored procedures and triggers .. 43
11.1. PostgreSQL .. 43
11.2. Oracle PL/SQL ... 43
11.3. Other DBMS .. 44

12. Using SQL Workbench/J ... 46
12.1. Displaying help ... 46
12.2. Resizing windows .. 46
12.3. Executing SQL statements ... 46
12.4. Displaying results .. 48
12.5. Dealing with BLOB and CLOB columns ... 49
12.6. Performance tuning when executing SQL ... 51
12.7. Using workspaces .. 51
12.8. Saving and loading SQL scripts ... 52
12.9. Displaying the structure of tables .. 52
12.10. Viewing server messages ... 52
12.11. Editing data .. 53
12.12. Deleting rows from the result ... 54
12.13. Sorting the result ... 54
12.14. Filtering the result .. 55
12.15. Running stored procedures ... 56
12.16. Export result data ... 56
12.17. Copy data to the clipboard ... 57
12.18. Import data into the result set ... 58

13. Using SQL Workbench/J specific annotations in SQL comments .. 59
13.1. Naming result tabs ... 59
13.2. Adding macros to the result's context menu .. 59
13.3. Re-using an existing named result tab ... 60
13.4. Scrolling the result ... 60
13.5. Appending a results ... 61
13.6. Suppressing empty results ... 61
13.7. Automatic refresh of the result ... 61

14. Using macros and text clips ... 62
14.1. Loading and saving macro sets .. 62
14.2. Defining Macros .. 62
14.3. Executable macros ... 62
14.4. Expandable macros .. 64

15. Working with foreign keys .. 65
15.1. Navigating referenced rows ... 65

SQL Workbench/J User's Manual

3

15.2. Generating JOIN conditions ... 65
15.3. Selecting foreign key values in referencing tables .. 66
15.4. Deleting rows with foreign keys ... 67

16. DBMS specific features ... 68
16.1. PostgreSQL specific features ... 68
16.2. Oracle specific features ... 69

17. Variable substitution in SQL statements ... 73
17.1. Defining variables .. 73
17.2. Populate a variable from a SELECT statement .. 73
17.3. Populate a variable from a file ... 74
17.4. Editing variables .. 74
17.5. Using variables in SQL statements .. 74
17.6. Prompting for values during execution .. 75
17.7. Controlling the order of variables during prompting ... 75

18. Using SQL Workbench/J in batch files .. 76
18.1. Specifying the connection ... 76
18.2. Specifying the script file(s) .. 76
18.3. Specifying a SQL command directly ... 76
18.4. Specifying a delimiter .. 77
18.5. Specifying an encoding for the file(s) .. 77
18.6. Specifying a logfile .. 77
18.7. Handling errors ... 77
18.8. Specify a script to be executed on successful completion .. 78
18.9. Specify a script to be executed after an error .. 78
18.10. Ignoring errors from DROP statements .. 78
18.11. Changing the connection ... 78
18.12. Controlling console output during batch execution ... 78
18.13. Running batch scripts interactively .. 79
18.14. Defining variables .. 79
18.15. Setting configuration properties .. 79
18.16. Examples .. 79

19. Using SQL Workbench/J in console mode .. 81
19.1. Entering statements .. 81
19.2. Exiting console mode ... 81
19.3. Setting or changing the connection ... 82
19.4. Displaying result sets ... 82
19.5. Running SQL scripts that produce a result ... 83
19.6. Controlling the number of rows displayed .. 83
19.7. Controlling the query timeout .. 84
19.8. Managing connection profiles .. 84
19.9. PostgreSQL psql commands .. 85

20. Export data using WbExport .. 86
20.1. Memory usage and WbExport .. 86
20.2. Exporting Excel files .. 86
20.3. General WbExport parameters .. 87
20.4. Parameters for text export ... 92
20.5. Parameters for XML export ... 94
20.6. Parameters for type SQLUPDATE, SQLINSERT or SQLDELETEINSERT 95
20.7. Parameters for Spreadsheet types (ods, xslm, xls, xlsx) ... 97
20.8. Parameters for HTML export ... 98
20.9. Parameters for JSON export .. 99
20.10. Compressing export files ... 99
20.11. Examples .. 99

21. Import data using WbImport .. 103
21.1. Importing spreadsheet files .. 103

SQL Workbench/J User's Manual

4

21.2. General parameters ... 103
21.3. Parameters for the type TEXT .. 110
21.4. Text Import Examples .. 114
21.5. Parameters for the type XML ... 117
21.6. Parameters for spreadsheet import ... 117
21.7. Update mode ... 118
21.8. Native UPSERT mode .. 119
21.9. Native insertIgnore mode .. 119

22. Copy data across databases .. 121
22.1. General parameters for the WbCopy command. ... 121
22.2. Copying data from one or more tables ... 124
22.3. Copying data based on a SQL query ... 126
22.4. Update mode ... 127
22.5. Synchronizing tables ... 127
22.6. Examples .. 127

23. Comparing databases ... 129
23.1. Compare two database schemas - WbSchemaDiff .. 129
23.2. Compare data across databases - WbDataDiff ... 132

24. Search data and code in the database ... 137
24.1. Search source of database objects - WbGrepSource .. 137
24.2. Search data in multiple tables - WbGrepData .. 138

25. SQL Workbench/J to generate DDL commands ... 141
25.1. Generate DROP statement with dependencies - WbGenerateDrop ... 141
25.2. Generate SQL script for database objects - WbGenerateScript .. 141
25.3. Generate SQL script for foreign key constraints - WbGenerateFKScript ... 142
25.4. Generate a table definition from an import file - WbGenerateImpTable .. 143
25.5. Show the source of a table - WbTableSource .. 144
25.6. Show the source of a view - WbViewSource .. 144
25.7. Show the source of a stored procedures - WbProcSource ... 144
25.8. Show the source of a trigger - WbTriggerSource ... 144
25.9. Generate DELETE statements with dependencies - WbGenerateDelete ... 145

26. Show information about database objects .. 146
26.1. Create a report of the database objects - WbSchemaReport .. 146
26.2. Show table structure - DESCRIBE .. 148
26.3. List tables - WbList .. 148
26.4. List indexes - WbListIndexes ... 148
26.5. List stored procedures - WbListProcs .. 149
26.6. List triggers - WbListTriggers .. 149
26.7. List catalogs - WbListCat .. 149
26.8. List schemas - WbListSchemas .. 149

27. Manage macros with SQL Workbench/J command ... 150
27.1. Define a new macro - WbDefineMacro .. 150
27.2. Delete a macro - WbDeleteMacro ... 150
27.3. List available macros - WbListMacros ... 150

28. Manage variables with SQL Workbench/J ... 151
28.1. Define a script variable - WbVarDef ... 151
28.2. Delete a script variable - WbVarDelete .. 151
28.3. Show defined script variables - WbVarList ... 151

29. Other SQL Workbench/J specific commands ... 152
29.1. Confirm script execution - WbConfirm .. 152
29.2. Display a message box - WbMessage .. 152
29.3. Print a text - WbEcho ... 152
29.4. Run a stored procedure with OUT parameters - WbCall .. 153
29.5. Execute a SQL script - WbInclude (@) .. 154
29.6. Conditional execution ... 156

SQL Workbench/J User's Manual

5

29.7. Extract and run SQL from a Liquibase ChangeLog - WbRunLB ... 156
29.8. Handling tables or updateable views without primary keys .. 157
29.9. Change the default fetch size - WbFetchSize ... 158
29.10. Run statements as a single batch - WbStartBatch, WbEndBatch .. 158
29.11. Extracting BLOB content - WbSelectBlob .. 159
29.12. Control feedback messages - WbFeedback .. 159
29.13. Setting connection properties - SET ... 159
29.14. Changing Oracle session behavior - SET .. 160
29.15. Changing read only mode - WbMode .. 161
29.16. Count rows for all tables - WbRowcCount .. 161
29.17. Change the connection for a script - WbConnect .. 162
29.18. Show the history of SQL statements - WbHistory ... 164
29.19. Run an XSLT transformation - WbXslt .. 164
29.20. Running operating system commands - WbSysExec ... 165
29.21. Opening a file with the default application - WbSysOpen .. 165
29.22. Change an internal configuration parameter - WbSetConfig .. 165

30. DataPumper ... 167
30.1. Overview .. 167
30.2. Selecting source and target connection ... 167
30.3. Copying a complete table .. 167
30.4. Advanced copy tasks .. 169

31. Database Object Explorer ... 170
31.1. Objects tab ... 170
31.2. Table details ... 172
31.3. Modifying the definition of database objects ... 173
31.4. Table data ... 173
31.5. Changing the display order of table columns ... 174
31.6. Customize data retrieval .. 174
31.7. Customizing the generation of the table source .. 175
31.8. View details .. 175
31.9. Procedure tab .. 175
31.10. Search table data .. 176

32. Working with the Database Object tree .. 178
32.1. Filtering the elements in the tree ... 178
32.2. Drag and drop support .. 178
32.3. Finding elements in the tree ... 178
32.4. Features available through the context menu ... 178

33. Common problems ... 181
33.1. The driver class was not found ... 181
33.2. Syntax error when creating stored procedures .. 181
33.3. The SQL source code for tables or indexes is incorrect ... 181
33.4. Timestamps with timezone information are not displayed correctly .. 181
33.5. Some of the dialogs are too small ... 182
33.6. Excel export not available ... 182
33.7. Out of memory errors ... 182
33.8. High CPU usage when executing statements ... 182
33.9. The GUI freezes when displaying menus or context menus .. 182

34. Common DBMS problems ... 183
34.1. Oracle .. 183
34.2. MySQL .. 184
34.3. Microsoft SQL Server ... 185
34.4. IBM DB2 ... 187
34.5. PostgreSQL ... 188
34.6. Sybase SQL Anywhere ... 189

35. Options dialog ... 190

SQL Workbench/J User's Manual

6

35.1. General options ... 190
35.2. Editor options .. 192
35.3. SQL Excecution options .. 193
35.4. Macro options ... 195
35.5. Bookmark options .. 195
35.6. Editor colors ... 196
35.7. Font settings ... 196
35.8. Auto-completion options ... 197
35.9. Workspace options ... 197
35.10. Options for displaying data .. 198
35.11. Options for formatting data .. 201
35.12. Data display colors ... 202
35.13. Options for data editing ... 202
35.14. DbExplorer options ... 203
35.15. Window Title .. 205
35.16. SQL Formatting ... 206
35.17. External SQL Formatter .. 209
35.18. SQL Generation ... 210
35.19. External tools .. 211
35.20. Look and Feel ... 211

36. Configuring keyboard shortcuts ... 212
36.1. Assign a shortcut to an action .. 212
36.2. Removing a shortcut from an action .. 212
36.3. Reset to defaults .. 212

37. Advanced configuration options .. 213
37.1. DBID ... 213
37.2. GUI related settings .. 213
37.3. Editor related settings ... 214
37.4. Controlling code generation for code snippets ... 215
37.5. DbExplorer Settings ... 216
37.6. General configuration settings .. 217
37.7. Database related settings ... 217
37.8. Configuring the check for the update table ... 222
37.9. DBMS specific settings ... 223
37.10. SQL Execution related settings ... 225
37.11. Default settings for Export/Import ... 226
37.12. Controlling the log file .. 227
37.13. Configure Log4J logging ... 229
37.14. Configuring the logfile viewer .. 229
37.15. Settings related to SQL statement generation ... 230
37.16. Customize table source retrieval .. 231
37.17. Customize index source retrieval ... 232
37.18. Filter settings ... 233

38. Simple properties based profile storage .. 234
Index ... 236

SQL Workbench/J User's Manual

7

1. General Information

1.1. Program version

This document describes build 121 of SQL Workbench/J

1.2. Feedback and support

Feedback regarding this program is more then welcome. Please report any problems you find, or send your ideas to
improve the usability to: <support@sql-workbench.net>

SQL Workbench/J can be downloaded from http://www.sql-workbench.net

If you want to contact other users of SQL Workbench/J you can do this using an online forum at Google Groups: http://
groups.google.com/group/sql-workbench

1.3. Credits and thanks

Thanks to Christian (and his team) for his thorough testing, his patience and his continuous ideas to improve this tool.
His input has influenced and driven a lot of features and has helped reduce the number of bugs drastically!

1.4. Third party components

1.4.1. JLine

SQL Workbench/J includes the JLine library to support command line editing for the console mode on Unix style
operating systems. The JDK on Windows supports full editing of the command line including the usual Windows
keyboard shortcuts to show the list of commands, so JLine is not used when SQL Workbench/J is running under
Windows.

The copyright notice for JLine follows:

Copyright (c) 2002-2006, Marc Prud'hommeaux <mwp1@cornell.edu> All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of JLine nor the names of its contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

http://www.sql-workbench.net
http://groups.google.com/group/sql-workbench
http://groups.google.com/group/sql-workbench
http://jline.sourceforge.net/

SQL Workbench/J User's Manual

8

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

1.4.2. WinRun4J License

The Launcher is created with WinRun4j: http://winrun4j.sourceforge.net/ which is licensed under the Common Public
License (CPL).

1.4.3. Editor

The editor is based on the JEdit Syntax package: http://sourceforge.net/projects/jedit-syntax/

The jEdit 2.2.1 syntax highlighting package contains code that is Copyright 1998-1999 Slava Pestov, Artur
Biesiadowski, Clancy Malcolm, Jonathan Revusky, Juha Lindfors and Mike Dillon.

1.4.4. Charset detector

SQL Workbench/J uses the Java port of Mozilla's universal charset detector from https://code.google.com/p/
juniversalchardet/

1.4.5. iHarder - Base64 implementation

SQL Workbench/J uses the Base64 implementation from http://iharder.net/base64

1.4.6. Icons

Some icons are taken from Tango project: http://tango.freedesktop.org/Tango_Icon_Library

Some icons are taken from KDE Crystal project: http://www.everaldo.com/crystal/

Some icons are taken from Yusuke Kamiyamane's Fugue Icons: http://p.yusukekamiyamane.com/

Some icons are taken from glyFX Image Library: http://www.glyfx.com

Some icons are taken from FatCow: http://www.fatcow.com/free-icons

Some icons are taken from Aha Soft: http://www.aha-soft.com/free-icons/

The DbExplorer icon is from the icon set "Mantra" by Umar Irshad: http://umar123.deviantart.com/

http://winrun4j.sourceforge.net/
http://www.eclipse.org/legal/cpl-v10.html
http://www.eclipse.org/legal/cpl-v10.html
http://sourceforge.net/projects/jedit-syntax/
https://code.google.com/p/juniversalchardet/
https://code.google.com/p/juniversalchardet/
http://iharder.net/base64
http://tango.freedesktop.org/Tango_Icon_Library
http://www.everaldo.com/crystal/
http://p.yusukekamiyamane.com/
http://www.glyfx.com
http://www.fatcow.com/free-icons
http://www.aha-soft.com/free-icons/
http://umar123.deviantart.com/

SQL Workbench/J User's Manual

9

2. Software license

Copyright 2002-2016, Thomas Kellerer

This software is licensed under a modified version of the Apache License, Version 2.0 http://sql-workbench.net/manual/
license.html that restricts the use of the software for certain organizations.

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

2.1. Definitions

"License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through 9
of this document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are under
common control with that entity. For the purposes of this definition, "control" means (i) the power, direct or indirect, to
cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent
(50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications, including but not limited to software source
code, documentation source, and configuration files.

"Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including
but not limited to compiled object code, generated documentation, and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or Object form, made available under the License, as
indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix
below).

"Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from) the
Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole, an
original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including the original version of the Work and any modifications
or additions to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for inclusion in the
Work by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner.
For the purposes of this definition, "submitted" means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source
code control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose
of discussing and improving the Work, but excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been
received by Licensor and subsequently incorporated within the Work.

2.2. Grant of Copyright License

Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-
exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly
display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form.

http://sql-workbench.net/manual/license.html
http://sql-workbench.net/manual/license.html

SQL Workbench/J User's Manual

10

2.3. Restrictions (deviation of the Apache License)

The right to use this software is explicitely NOT granted to the governments of the following countries or organizations
directly related to them:

• The United States of America

• United Kingdom of Great Britain and Northern Ireland

• Canada

• The People's Republic of China

• The Russian Federation

• Democratic People's Republic of Korea (North Korea)

• Syrian Arab Republic

• Kingdom of Saudi Arabia

• Republic of Turkey

Members of the above mentioned governments or any of its organizations (especially, but not limited to the so called
"intelligence" agencies) are NOT ALLOWED to download or use this software.

2.4. Grant of Patent License

Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide,
non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims
licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their
Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against
any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated
within the Work constitutes direct or contributory patent infringement, then any patent licenses granted to You under
this License for that Work shall terminate as of the date such litigation is filed.

2.5. Redistribution

You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You meet the following conditions:

1. You are not subject to the restrictions

2. You must give any other recipients of the Work or Derivative Works a copy of this License; and

3. You must cause any modified files to carry prominent notices stating that You changed the files; and

4. You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark,
and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part of
the Derivative Works; and

5. If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute
must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices
that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE
text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along
with the Derivative Works; or, within a display generated by the Derivative Works, if and wherever such third-party
notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify the

SQL Workbench/J User's Manual

11

License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or as an
addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be construed
as modifying the License. You may add Your own copyright statement to Your modifications and may provide
additional or different license terms and conditions for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of the Work otherwise
complies with the conditions stated in this License.

2.6. Submission of Contributions

Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You
to the Licensor shall be under the terms and conditions of this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement you
may have executed with Licensor regarding such Contributions.

2.7. Trademarks

This License does not grant permission to use the trade names, trademarks, service marks, or product names of the
Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing the
content of the NOTICE file.

2.8. Disclaimer of Warranty.

Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides
its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT,
MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining
the appropriateness of using or redistributing the Work and assume any risks associated with Your exercise of
permissions under this License.

2.9. Limitation of Liability

In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by
applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to
You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising
as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss of
goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if
such Contributor has been advised of the possibility of such damages.

2.10. Accepting Warranty or Additional Liability

While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance
of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in
accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of
any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional
liability.

END OF TERMS AND CONDITIONS

SQL Workbench/J User's Manual

12

3. Change log

Changes from build 120 to build 121

Bug fixes

• Some DDL statements were not generated properly when changing tables or indexes in the DbExplorer

• For Oracle, columns defined as TIMESTAMP WITH TIME ZONE or TIMESTAMP WITH LOCAL TIMEZONE
where not displayed correctly

• It was no longer possible to use a timestamp format without time for WbImport

• When loading a new macro file, the macro menu was not updated.

The full release history is available at the SQL Workbench/J homepage

http://www.sql-workbench.net/history.html

SQL Workbench/J User's Manual

13

4. Installing and starting SQL Workbench/J

4.1. Pre-requisites

To run SQL Workbench/J a Java 8 runtime environment or higher is required. You can either use a JRE ("Runtime") or
a JDK ("Development Kit") to run SQL Workbench/J.

SQL Workbench/J does not need a "fully installed" runtime environment, you can also copy the jre directory from an
existing Java installation or use the no-installer packages from the Oracle home page

The "local" Java installation in the jre subdirectory will not be used by the Windows® launcher if a Java runtime has
been installed and is registered in the system (i.e. the Windows® registry)

If you cannot (or do not want to) do a regular installation of a Java 8 runtime, you can download a ZIP distribution from
Oracle's home page. Under "JRE Download" you can download tar.gz archives for Windows® and Linux (32bit and
64bit versions are available).

The archive just needs to be unpacked. Inside the archive the actual JRE is stored in a directory named e.g.
jre1.8.0_xx where xx is the build number of the Java runtime. When moving this directory to the installation
directory of SQL Workbench/J you have to rename it to jre in order for the Windows® launcher or the batch files to
recognize it.

Maven central also offers ZIP archives of the Java runtime: http://maven.nuiton.org/nexus/content/repositories/jvm/
com/oracle/jre/

4.2. First time installation

Once you have downloaded the application's distribution package, unzip the archive into a directory of your choice.
Apart from that, no special installation procedure is needed.

You will need to configure the necessary JDBC driver(s) for your database before you can connect to a database. Please
refer to the chapter JDBC Drivers for details on how to make the JDBC driver available to SQL Workbench/J

When starting SQL Workbench/J for the first time, it will create a directory called .sqlworkbench in the current
user's home folder to store all its configuration information.

The "user's home directory" is $HOME on a Linux or Unix based system, and %HOMEPATH% on a Windows® system.
(Technically speaking it is using the contents of Java system property user.home to find the user's home directory)

4.3. Upgrade installation

When upgrading to a newer version of SQL Workbench/J simply overwrite the old sqlworkbench.jar, the exe
files and shell scripts that start the application. If you are using the bundle that includes the libraries for reading and
writing OpenOffice and Microsoft Office files, replace all existing jar files with those from the distribution archive as
well.

4.4. Starting the program from the commandline

sqlworkbench.jar is a self executing JAR file. This means, that if your Java runtime is installed and registered with the
system, a double click on sqlworkbench.jar will execute the application. To run the application manually use the
command:

http://www.java.com/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-2133155.html
http://maven.nuiton.org/nexus/content/repositories/jvm/com/oracle/jre/
http://maven.nuiton.org/nexus/content/repositories/jvm/com/oracle/jre/

SQL Workbench/J User's Manual

14

java -jar sqlworkbench.jar

Native executables for Windows® and Mac OSX are supplied that start SQL Workbench/J by using the default Java
runtime installed on your system. Details on using the Windows® launcher can be found here.

4.5. Starting the program using the shell script

To run SQL Workbench/J under an Unix-type operating system, the supplied shell script sqlworkbench.sh can be
used. For Linux desktops a sample ".desktop" file is available.

4.5.1. Specifying the Java runtime for the shell script

The shell scripts (and the batch files) first check if a Java runtime is available in the sub-directory jre. If that is
available it will be used.

If no "local" Java runtime is found, the environment variable WORKBENCH_JDK is checked. If that variable is
defined and points to a Java runtime installation, the shell script will use $WORKBENCH_JDK/bin/java to run the
application.

If WORKBENCH_JDK is not defined, the shell script will check for the environment variable JAVA_HOME. If that is
defined, the script will use $JAVA_HOME/bin/java to run the application.

If neither WORKBENCH_JDK nor JAVA_HOME is defined, the shell script will simply use java to start the application,
assuming that a valid Java runtime is available on the path.

All parameters that are passed to the shell scripts are passed to the application, not to the Java runtime. If you want to
change the memory or other system settings for the JVM, you need to edit the shell script.

4.6. Starting the program using the Windows® launcher

To start SQL Workbench/J on the Windows® platform, the supplied SQLWorkbench.exe (32bit Windows) or
SQLWorkbench64.exe (64bit Windows) can be used to start the program when using an installed Oracle Java
runtime. The file sqlworkbench.jar has to be located in the same directory as the exe files, otherwise it does not
work.

SQL Workbench/J does not need a "fully installed" runtime environment, you can also copy the jre directory from
an existing Java installation. Note that the "local" Java installation in the jre subdirectory will not be used by the
Windows® launcher if a Java runtime has been installed and registered in the system.

If you cannot (or don't want to) do a regular installation of a Java 8 runtime, you can download a ZIP distribution for
Windows® from Oracle's homepage: http://www.oracle.com/technetwork/java/javase/downloads/index.html. Under
"JRE Download" there is also an option to download a no-installer version. These downloads are offered as tar.gz
archives, so a tool that can handle Unix/Linux that format is needed for unpacking the archive (e.g. TotalCommander or
7-Zip).

When using a 32bit Java runtime the default memory available to the application is set to 1GB. When using a 64bit Java
runtime the default is set to 65% of the available physical memory.

4.6.1. Parameters for the Windows® launcher

Additional parameters to the Windows® launcher can be defined in a INI file that needs to be created in the
directory where the .exe is located. The name of the INI has to match the name of the used executable. To specify
parameters for the 64bit executable, use SQLWorkbench64.ini. To specify parameters for the 32bit executable, use
SQLWorkbench.ini

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-2133155.html
http://www.ghisler.com/
http://www.7-zip.org/

SQL Workbench/J User's Manual

15

Specifying the Java location

The launcher executables are based on WinRun4J, further documentation on the format of the configuration file and
parameters can also be found there.

If the launcher cannot find your installed Java runtime, you can specify the location of the JRE in the INI file with the
following parameter:

vm.location=c:\Program Files\Java\jdk8\jre\bin\server\jvm.dll

You need to specify the full path to the jvm.dll, not the directory where the Java runtime is installed. Note that the
32bit Java runtime has both a server\jvm.dll and client\jvm.dll A 64bit Java runtime only has a server
\jvm.dll.

Defining the memory for the application

The memory that is available to the Java runtime is defined through the parameter vm.heapsize.preferred in
the INI file. The unit is bytes. To start SQL Workbench/J with 12GB of available memory (which is only possible on a
64bit system!) add the following line to the INI file:

vm.heapsize.preferred=12000

You can verify the available memory in the about dialog: Help » About

4.7. Configuration directory

The configuration directory is the directory where all config (workbench.settings, WbProfiles.xml,
WbDrivers.xml) files are stored.

If no configuration directory has been specified on the commandline, SQL Workbench/J will identify the configuration
directory by looking at the following places

1. The current directory

2. The directory where sqlworkbench.jar is located

3. In the user's home direcotry (e.g. $HOME/.sqlworkbench on Unix based systems or %HOMEPATH%
\.sqlworkbench on Windows® systems)

If the file workbench.settings is found in one of those directories, that directory is considered the configuration
directory.

If no configuration directory can be identified, it will be created in the user's home directory (as .sqlworkbench).

The above mentioned search can be overridden by supplying the configuration directory on the commandline when
starting the application.

The following files are stored in the configuration directory:

• General configuration settings (workbench.settings)

• Connection profiles (WbProfiles.xml)

• JDBC Driver definitions (WbDrivers.xml)

• Customized shortcut definitions (WbShortcuts.xml). If you did not customize any of the shortcuts, this file does
not exist

http://winrun4j.sourceforge.net/

SQL Workbench/J User's Manual

16

• Macro definitions (WbMacros.xml)

• Saved column orders from the DbExplorer(WbColumnOrder.xml)

• Log file (workbench.log)

• Workspace files (*.wksp)

• The cache directory for the code completion

If you want to use a different file for the connection profile than WbProfiles.xml then you can specify the location of
the profiles with the -profileStorage parameter on the command line. Thus you can create different shortcuts on
your desktop pointing to different sets of profiles. The different shortcuts can still use the same main configuration file.

4.8. Copying an installation

To copy an installation to a different computer, simply copy all the files from the configuration directory to the other
computer (the log file does not need to be copied). When a profile is connected to a workspace, the workspace file
should be specified without a directory name (or using the %ConfigDir% placeholder). In that case it is always loaded
from the configuration directory. If the workspace file is given with an absolute directory, this needs to be adjusted after
the copying the files.

You will need to edit the driver definitions (stored in WbDrivers.xml) because the full path to the driver's jar file(s)
is stored in the file.

If you store all JDBC drivers in a common directory (or below a common root directory) you can define the libdir
variable. In that case the paths to the driver's jar file are stored relative to the %LibDir% directory. After copying the
installation you only need to adjust the %LibDir% variable on the other computer.

4.9. Increasing the memory available to the application

SQL Workbench/J is a Java application and thus runs inside a virtual machine (JVM). The virtual machine limits the
memory of the application independently from the installed memory that is available to the operating system.

SQL Workbench/J reads all the data that is returned by a SQL statement into memory. When retrieving large result sets,
you might get an error message, indicating that not enough memory is available. In this case you need to increase the
memory that the JVM requests from the operating system (or change your statement to return fewer rows).

When using the Windows launcher (e.g. SQLWorkbench64.exe), the available memory is defined in the INI file.

When using the shell or batch scripts, the available memory is defined through the -Xmx parameter for the java
command. In the following example, the parameter -Xmx4g sets the available memory to 4GB

java -Xmx4g -jar sqlworkbench.jar

If you are using the supplied shell scripts to start SQL Workbench/J, you can edit the scripts and change the value for
the -Xmx parameter in there.

With a 32bit Java runtime, you can not use (or assign) more than approx. 1.5GB for the application. If you
need to process results that require more memory that that, you will have to use a 64bit Java runtime.

SQL Workbench/J User's Manual

17

5. Command line parameters

Command line parameters are not case sensitive. The parameters -PROFILE or -profile are identical. The usage of
the command line parameters is identical between the launcher or starting SQL Workbench/J using the java command
itself.

When quoting parameters on the command line (especially in a Windows® environment) you have to use
single quotes, as the double quotes won't be passed to the application.

5.1. Specify the directory for configuration settings

The parameter -configDir specifies the directory where SQL Workbench/J will store all its settings. If this
parameter is not supplied, the directory where the default location is used. The placeholder ${user.home} will be
replaced with the current user's home directory (as returned by the Operating System). If the specified directory does
not exist, it will be created.

If you want to control the location where SQL Workbench/J stores the configuration files, you have to start the
application with the parameter -configDir to specify an alternate directory:

java -jar sqlworkbench.jar -configDir=/export/configs/SQLWorkbench

or if you are using the Windows® launcher:

SQLWorkbench -configDir=c:\ConfigData\SQLWorkbench

The placeholder ${user.home} will be replaced with the current user's home directory (as returned by the Operating
System), e.g.:

java -jar sqlworkbench.jar -configDir=${user.home}/.sqlworkbench

If the specified directory does not exist, it will be created.

On the Windows® platform you can use a forward slash to separate directory names in the parameter.

5.2. Specify a base directory for JDBC driver libraries

The -libdir parameter defines the base directory for your JDBC drivers. The value of this parameter can be
referenced when defining a driver library using the placeholder %LibDir% The value for this parameter can also be set
in the file workbench.settings.

5.3. Specify the file containing connection profiles

SQL Workbench/J stores the connection profiles in a file called WbProfiles.xml. If you want to use a different
filename, or use different set of profiles for different purposes you can define the file where the profiles are stored with
the -profileStorage parameter.

If the value of the parameter does not contain a path, the file will be expected (and stored) in the configuration
directory.

The default XML format of the WbProfiles.xml file is not intended to be edited manually. To manage pre-defined
profiles for console mode or batch mode, it's easier to use a properties file containing the profiles.

SQL Workbench/J User's Manual

18

When specifying a properties file with -profileStorage the file extension must be .properties

5.4. Defining variables

You can define variables when starting SQL Workbench/J by either passing the variable definition directly or by
passing a file that contains the variable definitions.

Defining variable values in this way can also be used when running in batch mode.

Providing a file with variable definitions

With the -varFile parameter a definition file for internal variables can be specified. Each variable has to be listed
on a single line in the format variable=value. Lines starting with a # character are ignored (comments). the file
can contain unicode sequences (e.g. \u00fc. Values spanning multiple lines are not supported. When reading a file
during startup the default encoding is used. If you need to read the file in a specific encoding please use the WbVarDef
command with the -file and -encoding parameter.

#Define some values
var_id=42
person_name=Dent
another_variable=24

If the above file was saved under the name vars.txt, you can use those variables by starting SQL Workbench/J
using the following command line:

java -jar sqlworkbench.jar -varFile=vars.txt

Specifying variables directly

A single variable can be defined by passing the parameter -variable. This parameter can be supplied multiple times
to define multiple variables:

java -jar sqlworkbench.jar -variable=foo=42 -variable=bar='xyz'

Note that the variable definition does not need to be quoted even though it contains the = character. Using -
variable=bar='xyz' will include the single quotes in the variable value. The variable definition only needs to be
quoted if it contains a space:

java -jar sqlworkbench.jar -variable="foo=hello world"

5.5. Prevent updating the .settings file

If the -nosettings parameter is specified, SQL Workbench/J will not write its settings to the file
workbench.settings when it's beeing closed. Note that in batch mode, this file is never written.

If this parameter is supplied, the workspace will not be saved automatically as well!

5.6. Connect using a pre-defined connection profile

SQL Workbench/J User's Manual

19

You can specify the name of an already created connection profile on the command line with the -
profile=<profile name> parameter. The name has to be passed exactly like it appears in the profile dialog (case
sensitive!). If the name contains spaces or dashes, it has to be enclosed in quotations marks. If you have more than one
profile with the same name but in different profile groups, you have to specify the desired profile group using the -
profilegroup parameter, otherwise the first profile matching the passed name will be selected.

Example (on one line):

java -jar sqlworkbench.jar
 -profile='PostgreSQL - Test'
 -script='test.sql'

In this case the file WbProfiles.xml must be in the current (working) directory of the application. If this is not the
case, please specify the location of the profile using either the -profileStorage or -configDir parameter.

If you have two profiles with the names "Oracle - Test" you will need to specify the profile group as well (in one
line):

java -jar sqlworkbench.jar
 -profile='PostgreSQL - Test'
 -profilegroup='Local'
 -script='test.sql'

You can also store the connection profiles in a properties file and specify this file using the -profileStorage
parameter.

5.7. Connect without a profile

You can also specify the full connection parameters on the command line, if you don't want to create a profile
only for executing a batch file. The advantage of this method is, that SQL Workbench/J does not need the files
WbProfiles.xml, WbDrivers.xml to be able to connect to the database.

Specifying all connection attributes

Parameter Description

-url The JDBC connection URL

-username Specify the username for the DBMS

-password Specify the password for the user

If this parameter is not specified (but -url and -username) then you will be prompted to
enter the password. To supply an empty password use -password= in the command line
when starting SQL Workbench/J

-driver Specify the full class name of the JDBC driver

-driverJar Specify the full pathname to the .jar file containing the JDBC driver

-autocommit Set the autocommit property for this connection. You can also control the autocommit mode
from within your script by using the SET AUTOCOMMIT command.

-rollbackOnDisconnect If this parameter is set to true, a ROLLBACK will be sent to the DBMS before the connection
is closed. This setting is also available in the connection profile.

-checkUncommitted If this parameter is set to true, SQL Workbench/J will try to detect uncommitted changes in
the current transaction when the main window (or an editor panel) is closed. If the DBMS
does not support this, this argument is ignored. It also has no effect when running in batch or
console mode.

SQL Workbench/J User's Manual

20

Parameter Description

-trimCharData Turns on right-trimming of values retrieved from CHAR columns. See the description of the
profile properties for details.

-removeComments This parameter corresponds to the Remove comments setting of the connection profile.

-fetchSize This parameter corresponds to the Fetch size setting of the connection profile.

-ignoreDropError This parameter corresponds to the Ignore DROP errors setting of the connection profile.

-altDelimiter This parameter corresponds to the Alternate delimiter setting of the connection profile.

-emptyStringIsNull This parameter corresponds to the Empty String is NULL setting of the connection profile.
This will only be needed when editing a result set in GUI mode.

-connectionProperties This parameter can be used to pass extended connection properties if the driver does not
support them e.g. in the JDBC URL. The values are passed as key=value pairs, e.g. -
connectionProperties=someProp=42

If either a comma or an equal sign occurs in a parameter's value, it must be quoted. This
means, when passing multiple properties the whole expression needs to be quoted: -
connectionProperties='someProp=42,otherProp=24'.

As an alternative, a colon can be used instead of the equals sign, e.g -
connectionProperties=someProp:42,otherProp:24. In this case no quoting is
needed (because no delimiter is part of the parameters value).

If any of the property values contain a comma or an equal sign, then the
whole parameter value needs to be quoted again, even when using a colon. -
connectionProperties='someProp:"answer=42",otherProp:"2,4"' will
define the value answer=42 for the property someProp and the value 2,4 for the property
otherProp.

-altDelim The alternate delimiter to be used for this connection. e.g. -altDelimiter=GOl to define
a SQL Server like GO as the alternate delimiter. Note that when running in batchmode you
can also override the default delimiter by specifying the -delimiter parameter.

-separateConnection If this parameter is set to true, and SQL Workbench/J is run in GUI mode, each SQL tab will
use it's own connection to the database server. This setting is also available in the connection
profile. The default is true.

-connectionName When specifying a connection without a profile (only using -username, -password and
so on) then the name of the connection can be defined using this parameter. The connection
name will be shown in the title of the main window if SQL Workbench/J is started in GUI
mode. The parameter does not have any visible effect when running in batch or console
mode.

-workspace The workspace file to be loaded. If the file specification does not include a directory, the
workspace will be loaded from the configuration directory. If this parameter is not specified,
the default workspace (Default.wksp) will be loaded.

-readOnly Puts the connection into read-only mode.

By specifying a simple connection string

Parameter Description

-connection Allows to specify a full connection definition as a single parameter (and thus does not require
a pre-defined connection profile).

The connection is specified with a comma separated list of key value pairs:

• username - the username for the connection

SQL Workbench/J User's Manual

21

Parameter Description

• password - the password for the connection

• url - the JDBC URL

• driver - the class name for the JDBC driver. If this is not specified, SQL Workbench/J
will try to determine the driver from the JDBC URL

• driverJar - the full path to the JDBC driver. This not required if a driver for the
specified class is already configured

e.g.: "username=foo,password=bar,url=jdbc:postgresql://
localhost/mydb"

If an approriate driver is already configured the driver's classname or the JAR file don't have
to be specified.

If an approriate driver is not configured, the driver's jar file must be specified:

"username=foo,password=bar,url=jdbc:postgresql://localhost/
mydb,driverjar=/etc/drivers/postgresql.jar"
SQL Workbench/J will try to detect the driver's classname automatically (based on the JDBC
URL).

If this parameter is specified, -profile is ignored.

The individual parameters controlling the connection behaviour can be used together with -
connection, e.g. -autocommit or -fetchSize

In addition to -connection> the following parameters are also supported to specify
connections for WbCopy, WbDataDiff or WbSchemaDiff:

• -sourceConnection

• -targetConnection

• -referenceConnection

If a value for one of the parameters contains a dash or a space, you will need to quote the parameter value.

A disadvantage of this method is, that the password is displayed in plain text on the command line. If this is used in a
batch file, the password will be stored in plain text in the batch file. If you don't want to expose the password, you can
use a connection profile and enable password encryption for connection profiles.

SQL Workbench/J User's Manual

22

6. JDBC Drivers

6.1. Configuring JDBC drivers

 Before you can connect to a DBMS you have to configure the JDBC driver to be used. The driver configuration is
available in the connection dialog or through File » Manage Drivers

The JDBC driver is a file with the extension .jar (some drivers need more than one file). See the end of this section
for a list of download locations. Once you have downloaded the driver you can store the driver's .jar file anywhere you
like.

To register a driver with SQL Workbench/J you need to specify the following details:

• the driver's class name

• the library ("JAR file") where to find the driver (class)

After you have selected the .jar file(s) for a driver (by clicking on the button), SQL Workbench/J will scan the jar
file looking for a JDBC driver. If only a single driver is found, the class name is automatically put into the entry field
for the class name. If more than one JDBC driver implementation is found, you will be prompted to select one. In that
case, please refer to the manual of your driver or database to choose the correct one.

SQL Workbench/J is not using the system's CLASSPATH definition (i.e. the environment variable named
CLASSPATH) to load the driver classes. Changing the CLASSPATH environment variable to include your
driver's library will have no effect.

If you enter the class name of the driver manually, remember that it's case-sensitive: org.postgresql.driver is
something different than org.postgresql.Driver

Files that are not found are displayed in red and italics.

The name of the library has to contain the full path to the driver's jar file, so that SQL Workbench/J can find it. Some
drivers are distributed in several jar files. In that case, select all necessary files in the file open dialog, or add them one
after the other. If an entry is selected in the list of defined jar files when adding a new jar file, the selected entry will be
overwritten.

 For drivers that require a license file, you have to include the license jar to the list of files for that driver.

If the driver requires files that are not contained in the jar library, you have to include the directory containing those
files as part of the library definition (e.g: "c:\etc\TheDriver\jdbcDriver.jar;c:\etc\TheDriver").

 You can assign a sample URL to each driver, which will be put into the URL property of the profile, when the driver
class is selected.

SQL Workbench/J comes with some sample URLs pre-configured. Some of these sample URLs use brackets to indicate
a parameters that need to be replaced with the actual value for your connection: (servername) In this case the entire
sequence including the brackets need to be replaced with the actual value.

The JDBC/ODBC bridge is no longer available in Java 8 and therefor it is not possible to connect through
an ODBC data source when using SQL Workbench/J.

SQL Workbench/J User's Manual

23

6.2. Specifying a library directory

When defining the location of the driver's .jar file, you can use the placeholder %LibDir% instead of the using the
directory's name directly. This way your WbDrivers.xml is portable across installations. To specify the library
directory, either set it in the workbench.settings file, or specify the directory using the -libdir switch when
starting the application.

6.3. Popular JDBC drivers

Here is an overview of common JDBC drivers, and the class name that need to be used. SQL Workbench/J contains
predefined JDBC drivers with sample URLs for connecting to the database.

Most drivers accept additional configuration parameters either in the URL or through the extended properties. Please
consult the manual of your driver for more detailed information on these additional parameters.

DBMS Driver class Library name

PostgreSQL org.postgresql.Driver postgresql-9.4-1203.jdbc4.jar (exact
name depends on PostgreSQL version)
http://jdbc.postgresql.org

Firebird
SQL

org.firebirdsql.jdbc.FBDriver firebirdsql-full.jar
http://www.firebirdsql.org/

Oracle oracle.jdbc.OracleDriver ojdbc7.jar
http://www.oracle.com/technetwork/database/
features/jdbc/index-091264.html

H2 Database
Engine

org.h2.Driver h2.jar
http://www.h2database.com

HSQLDB org.hsqldb.jdbcDriver hsqldb.jar
http://hsqldb.sourceforge.net

IBM DB2 com.ibm.db2.jcc.DB2Driver db2jcc4.jar
http://www-01.ibm.com/software/data/db2/linux-
unix-windows/download.html

IBM DB2
for iSeries

com.ibm.as400.access.AS400JDBCDriverjt400.jar
http://jt400.sourceforge.net/

Apache
Derby

org.apache.derby.jdbc.EmbeddedDriverderby.jar
http://db.apache.org/derby/

Teradata com.teradata.jdbc.TeraDriver terajdbc4.jar
http://www.teradata.com/DownloadCenter/
Forum158-1.aspx

Sybase SQL
Anywhere

com.sybase.jdbc3.jdbc.SybDriver jconnect.jar
http://www.sybase.com/products/allproductsa-z/
softwaredeveloperkit/jconnect

SQL Server
(Microsoft
driver)

com.microsoft.sqlserver.jdbc.SQLServerDriversqljdbc42.jar
http://msdn.microsoft.com/data/jdbc

SQL Server
(jTDS
driver)

net.sourceforge.jtds.jdbc.Driver jtds.jar
http://jtds.sourceforge.net

MariaDB org.mariadb.jdbc.Driver mariadb-java-client-1.3.6.jar (exact
name depends on the driver version)

http://jdbc.postgresql.org
http://www.firebirdsql.org/
http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html
http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html
http://www.h2database.com
http://hsqldb.sourceforge.net
http://www-01.ibm.com/software/data/db2/linux-unix-windows/download.html
http://www-01.ibm.com/software/data/db2/linux-unix-windows/download.html
http://jt400.sourceforge.net/
http://db.apache.org/derby/
http://www.teradata.com/DownloadCenter/Forum158-1.aspx
http://www.teradata.com/DownloadCenter/Forum158-1.aspx
http://www.sybase.com/products/allproductsa-z/softwaredeveloperkit/jconnect
http://www.sybase.com/products/allproductsa-z/softwaredeveloperkit/jconnect
http://msdn.microsoft.com/data/jdbc
http://jtds.sourceforge.net

SQL Workbench/J User's Manual

24

DBMS Driver class Library name

https://downloads.mariadb.org/connector-java/

MySQL com.mysql.jdbc.Driver mysql-connector-java-5.1.36-
bin.jar (exact name depends on the driver
version)
http://www.mysql.com/downloads/connector/j/

https://downloads.mariadb.org/connector-java/
http://www.mysql.com/downloads/connector/j/

SQL Workbench/J User's Manual

25

7. Connecting to the database

7.1. Connection profiles

SQL Workbench/J uses the concept of profiles to store connection information. A connection profile stores two
different types of settings:

• JDBC related properties such as the JDBC driver class, the connection URL, the username etc.

• SQL Workbench/J related properties such as the profile name the associated workspace, etc.

After the program is started, you are prompted to choose a connection profile to connect to a database. The dialog will
display a list of available profiles on the left side. When selecting a profile, its details (JDBC and SQL Workbench/J
settings) are displayed on the right side of the window.

 To create a new profile click on the New Profile button (). This will create a new profile with the name "New

Profile". The new profile will be created in the currently active group. The other properties will be empty. To create
a copy of the currently selected profile click on the Copy Profile button (). The copy will be created in the

current group. If you want to place the copy into a different group, you can either choose to Copy & Paste a copy of the
profile into that group, or move the copied profile, once it is created.

 To delete an existing profile, select the profile in the list and click on the Delete Profile button ()

7.2. Managing profile groups

Profiles can be organized in groups, so you can group them by type (test, integration, production) or customer or
database system. When you start SQL Workbench/J for the first time, no groups are created and the tree will only
display the default group node. To add a new group click on the Add profile group () button. The new group

will be appended at the end of the tree. If you create a new profile, it will be created in the currently selected group. If a
profile is selected in the tree and not a group node, the new profile will be created in the group of the currently selected
profile.

Empty groups are discarded (i.e. not saved) when you restart SQL Workbench/J

You can move profiles from one group to another but right clicking on the profile, then choose Cut. Then right-click
on the target group and select Paste from the popup menu. If you want to put the profile into a new group that is not yet
created, you can choose Paste to new folder. You will be prompted to enter the new group name.

If you choose Copy instead of Cut, a copy of the selected profile will be pasted into the target group. This is similar to
copying the currently selected profile.

To rename a group, select the node in the tree, then press the F2 key. You can now edit the group name.

To delete a group, simply remove all profiles from that group. The group will then automatically be removed.

SQL Workbench/J User's Manual

26

7.3. JDBC related profile settings

7.3.1. Driver

This is the class name for the JDBC driver. The exact name depends on the DBMS and driver combination. The
documentation for your driver should contain this information. SQL Workbench/J has some drivers pre-configured. See
JDBC drivers for details on how to configure your JDBC driver for SQL Workbench/J.

7.3.2. URL

The connection URL for your DBMS. This value is DBMS specific. The pre-configured drivers from SQL Workbench/
J contain a sample URL. If the sample URL (which gets filled into the text field when you select a driver class) contains
words in brackets, then these words (including the brackets) are placeholders for the actual values. You have to replace
them (including the brackets) with the appropriate values for your DBMS connection.

7.3.3. Username

This is the name of the DBMS user account

You can use placeholders in the username property that get replaced with operating system environment variables or
Java properties. E.g. ${user.name} will be replaced with the current operating system user - this works on any
operating system as the variable is supplied by the Java runtime. ${USERNAME} would be replaced with the current
username on Windows. you can combine this with fixed text, e.g. DEV_${user.name} or TEST_${user.name}.

7.3.4. Password

This is the password for your DBMS user account. You can choose not to store the password in the connection profile.

7.3.5. Autocommit

This check box enables/disables the "auto commit" property for the connection. If autocommit is enabled, then
each SQL statement is automatically committed on the DBMS. If this is disabled, any DML statement (UPDATE,
INSERT, DELETE, ...) has to be committed in order to make the change permanent. Some DBMS require a
commit for DDL statements (CREATE TABLE, ...) as well. Please refer to the documentation of your DBMS.

7.3.6. Fetch size

This setting controls the default fetch size for data retrieval. This parameter will directly be passed to the setFetchSize()
method of the Statement object. For some combinations of JDBC driver and DBMS, setting this parameter to a
rather large number can improve retrieval performance because it saves network traffic.

The JDBC driver for PostgreSQL controls the caching of ResultSets through this parameter. As the results are cached
by SQL Workbench/J anyway, it is suggested to set this parameter to a value greater then zero to disable the caching
in the driver. Especially when exporting large results using WbExport or WbCopy it is recommended to turn off the
caching in the driver (e.g. by setting the value for this property to 1).

You can change the fetch size for the current connection manually by running the SQL Workbench/J specific command
WbFetchSize

7.3.7. Timeout

This property defines a timeout in seconds that is applied when establishing the connection to the database server. If no
connection is possible in that time, the attempt will be aborted. If this is empty, the default timeout defined by the JDBC
driver is used.

http://java.sun.com/javase/7/docs/api/java/sql/Statement.html#setFetchSize(int)
http://jdbc.postgresql.org
http://www.postgresql.org/
http://jdbc.postgresql.org/documentation/80/query.html#query-with-cursor

SQL Workbench/J User's Manual

27

7.4. PostgreSQL connections

When connecting to a PostgreSQL database it's not necessary to specify username and password. Username and
password will then be resolved according to the rules as psql or any other libpq application would do:

Username

If no username is specified in the connection profile, SQL Workbench/J will first check the environment variable
PGUSER, if that is not defined, the current operating system user will be used.

Password

If no password is specified and the saving of the password is disabled, SQL Workbench/J will first check the
environment variable PGPASSWORD. If that is not defined, SQL Workbench/J will look for a Postgres password file. If
that exists and the host, database, port and user are matched in the password file, the stored password will be used.

7.5. Extended properties for the JDBC driver

JDBC drivers support additional connection properties where you can fine tune the behavior of the driver or enable
special features that are not switched on by default. Most drivers support passing properties as part of the URL, but
sometimes they need to be passed to the driver using a different method called extended properties.

If you need to pass an additional parameter to your driver you can do that with the Extended Properties button. After
clicking that button, a dialog will appear with a table that has two columns. The first column is the name of the
property, the second column the value that you want to pass to the driver.

To create a new property click on the new button. A new row will be inserted into the table, where you can define the
property. To edit an existing property, simply double click in the table cell that you want to edit. To delete an existing

property click on the Delete button ().

Some driver require those properties to be so called "System properties" (see the manual of your driver for details). If
this is the case for your driver, check the option Copy to system properties before connecting.

7.6. SQL Workbench/J specific settings

7.6.1. Prompt for username

If this option is enabled (i.e. checked) you will be asked to enter the username and password each time you connect to
the specified database server. If this is checked, the input fields for username and password are disabled (but the values
will still be saved in the profile).

This is useful if you have many different usernames for the same DBMS server and don't want to create a connection
profile for each user.

7.6.2. Save password

If this option is enabled (i.e. checked) the password for the profile will also be stored in the profile file. If the global
option Encrypt Passwords is selected, then the password will be stored encrypted, otherwise it will be stored in plain
text!

http://www.postgresql.org/docs/current/static/libpq.html
http://www.postgresql.org/docs/current/static/libpq-envars.html
http://www.postgresql.org/docs/current/static/libpq-envars.html
http://www.postgresql.org/docs/current/static/libpq-envars.html
http://www.postgresql.org/docs/current/static/libpq-pgpass.html

SQL Workbench/J User's Manual

28

If you choose not to store the password, you will be prompted for it each time you connect using the profile.

To enable the use of PostgreSQL's password file this option needs to be disabled.

7.6.3. Separate connection per tab

If this option is enabled, then each tab in the main window will open a separate (phyiscal) connection to the database
server. This is useful, if the JDBC driver is not multi-threaded and does not allow to execute two statements
concurrently on the same connection.

The connection for each tab will not be opened until the tab is actually selected.

Enabling this option has impact on transaction handling as well. If only one connection for all tabs (including the
Database Explorer) is used, then a transaction that is started in one tab is "visible" to all other tabs (as they share the
same connection). Changes done in one tab via UPDATE are seen in all other tabs (including the Database Explorer). If
a separate connection is used for each tab, then each tab will have its own transaction context. Changes done in one tab
will not be visible in other tabs until they are committed (depending on the isolation level of the database of course)

If you intend to execute several statements in parallel then it's strongly recommended to use one connection for each
tab. Most JDBC drivers are not multi-threaded and thus cannot run more then on statement on the same connection.
SQL Workbench/J does try to detect conflicting usages of a single connection as far as possible, but it is still possible to
lock the GUI when running multiple statements on the same connection

When you disable the use of separate connections per tab, you can still create new a (physical) connection for the
current tab later, by selecting File » New Connection. That menu item will be disabled if Separate connection
per tab is disabled or you have already created a new connection for that tab.

7.6.4. Ignore DROP errors

If this option is enabled, any error reported by the database server when issuing a statement that begins with DROP, will
be ignored. Only a warning will be printed into the message area. This is useful when executing SQL scripts to build up
a schema, where a DROP TABLE is executed before each CREATE TABLE. If the table does not exist the error which
the DROP statement will report, is not considered as an error and the script execution continues.

When running SQL Workbench/J in batchmode this option can be defined using a separate command line parameter.
See Section 18, “Using SQL Workbench/J in batch files” for details.

7.6.5. Trim CHAR data

For columns defined with the CHAR datatype, some DBMS pad the values to the length defined in the column
definition (e.g. a CHAR(80) column will always contain 80 characters). If this option is enabled, SQL Workbench/J will
remove trailing spaces from the values retrieved from the database. When running SQL Workbench/J in batch mode,
this flag can be enabled using the -trimCharData switch.

7.6.6. Hide warnings

When a SQL statement returns warnings from the DBMS, these are usually displayed after the SQL statement has
finished. By enabling this option, warnings that are returned from the DBMS are never displayed.

Note that for some DBMS (e.g. MS SQL Server) server messages (PRINT 'Hello, world') are also returned as a
warning by the driver. If you disable this property, those messages will also not be displayed.

If you hide warnings when connected to a PostgreSQL server, you will also not see messages that are returned e.g. by
the VACUUM command.

http://www.postgresql.org/docs/current/static/libpq-pgpass.html

SQL Workbench/J User's Manual

29

7.6.7. Remove comments

If this option is checked, then comments will be removed from the SQL statement before it is sent to the database. This
covers single line comments using -- or multi-line comments using /* .. */

As an ANSI compliant SQL Lexer is used for detecting comments, this does not work for non-standard MySQL
comments using the # character.

7.6.8. Confirm updates

If this option is enabled, then SQL Workbench/J will ask you to confirm the execution of any SQL statement that is
updating or changing the database in any way (e.g. UPDATE, DELETE, INSERT, DROP, CREATE, COMMIT, ...).

If you save changes from within the result list, you will be prompted even if Confirm result set updates is disabled.

This option cannot be selected together with the "Read only" option.

The read only state of the connection can temporarily be changed (without modifying the profile) using the WbMode
command.

7.6.9. Read only

If this option is enabled, then SQL Workbench/J will never run any statements that might change the database.
Changing of retrieved data is also disabled in this case. This option can be used to prevent accidental changes to
important data (e.g. a production database)

SQL Workbench/J cannot detect all possible statements that may change the database. Especially when calling stored
procedures SQL Workbench/J cannot know if they will change the database. But they might be needed to retrieve data,
this cannot be disabled altogether.

You can extend the list of keywords known to update the data in the workbench.settings file.

SQL Workbench/J will not guarantee that there is no way (accidentally or intended) to change data when
this option is enabled. Please do not rely on this option when dealing with important data that must not be
changed.

If you really need to guarantee that no data is changed, you have to do this with the security mechanism of
your DBMS, e.g. by creating a read-only user.

This option cannot be selected together with the "Confirm updates" option.

The read only state of the connection can temporarily be changed (without modifying the profile) using the WbMode
command.

7.6.10. Rollback before disconnect

Some DBMS require that all open transactions are closed before actually closing the connection to the server. If this
option is enabled, SQL Workbench/J will send a ROLLBACK to the backend server before closing the connection. This
is e.g. required for Cloudscape/Derby because executing a SELECT query already starts a transaction. If you see errors
in your log file while disconnecting, you might need to enable this for your database as well.

7.6.11. Empty string is NULL

If this option is enabled, then a NULL value will be sent to the database for an empty (zero length) string. Everything
else will be sent to the database as entered.

Empty values for non-character values (dates, numbers etc) are always treated as NULL.

SQL Workbench/J User's Manual

30

If this option is disabled you can still set a column's value to NULL while editing a result set. Please see Editing
data [54] for details

7.6.12. Include NULL columns in INSERT

This setting controls whether columns where the value from the result grid is null are included in INSERT statements.
If this setting is enabled, then columns for new rows that have a null value are listed in the column list for the INSERT
statement (with the corresponding NULL value passed in the VALUES list). If this property is un-checked, then those
columns will not be listed in INSERT statements. This is useful if you have e.g. auto-increment columns that only work
if the columns are not listed in the DML statement.

7.6.13. Check for uncommitted changes

This option is (currently) only available for PostgreSQL, HSQLDB 2.x and Oracle

When closing the application (or a SQL panel) SQL Workbench/J will check if the current transaction has changes that
were not committed and will issue a warning.

For more details see the description of DBMS specific features.

7.6.14. Remember DbExplorer Schema

If this option is enabled, the currently selected schema in the DbExplorer will be stored in the workspace associated
with the current connection profile. If this option is not enabled, the DbExplorer tries to pre-select the current schema
when it's opened.

7.6.15. Store completion cache locally

If this option is enabled, the cache that is used for the code completion is stored locally when the connection is closed.
When connecting to the database the next time the cache is pre-filled with the information from the local cache file.

The cache files will be created in a directory named .cache inside the configuration directory.

7.6.16. Info Background

Once a connection has been established, information about the connection are display in the toolbar of the main
window. You can select a color for the background of this display to e.g. indicate "sensitive" connections. To use the

default background, click on the Reset () button. If no color is selected this is indicated with the text (None)
next to the selection button. If you have selected a color, a preview of the color is displayed.

7.6.17. Alternate delimiter

If an alternate delimiter is defined, and the statement that is executed ends with the defined delimiter, this one will be
used instead of the standard semicolon. The profile setting will overwrite the global setting for this connection. This
way you can define the GO keyword for SQL Server connections, and use the forward slash in Oracle connections.
Please refer to using the alternate delimiter for details on this property.

7.6.18. Workspace

For each connection profile, a workspace file can (and should) be assigned. When you create a new connection, you can
either leave this field empty or supply a name for a new profile.

SQL Workbench/J User's Manual

31

If the profile that you specify does not exist, you will be prompted if you want to create a new file, load a different
workspace or want to ignore the missing file. If you choose to ignore, the association with the workspace file will be
cleared and the default workspace will be loaded.

If you choose to leave the workspace file empty, or ignore the missing file, you can later save your workspace to a new
file. When you do that, you will be prompted if you want to assign the new workspace to the current connection profile.

To save you current workspace choose Workspace » Save Workspace as to create a new workspace file.

If you specify a filename that does not contain a directory or is a relative filename, it is assumed the workspace is stored
in configuration directory.

As the workspace stores several settings that are related to the connection (e.g. the selected schema in the
DbExplorer) it is recommended to create one workspace for each connection profile.

7.6.19. Tagging connection profiles

To organize a large number of profiles it is possible to supply tags for each profile. These tags are then used by the
profile filter to quickly show only certain profiles.

The tags for a profile are entered as a comma separated list. To see a list of already defined tags, press Ctrl-Space in the
input field.

7.6.20. Main window icon

You can assign an icon file for each connection profile. The icon will then be used for the main window instead of the
default application icon.

The icon file can only be a png or gif file.

Do not use an animated GIF file because that will hang the application!

At least one file with an icon of 16x16 pixel should be selected. You can select multiple files with different icon sizes
(e.g. a 16x16 and a 32x32 icon). Whether or not the additional sizes (i.e. bigger than 16x16) will be used depends on
your operating system and desktop theme.

7.6.21. Connect scripts

You can define a SQL script that is executed immediately after a connection for this profile has been established,
and a script that is executed before a connection is about to be closed. To define the scripts, click on the button
Connect scripts. A new window will be opened that contains two editors. Enter the script that should be executed upon
connecting into the upper editor, the script to be executed before disconnecting into the lower editor. You can put more
than one statement into the scripts. The statements have to be separated by a semicolon.

The statements that are executed will be logged in the message panel of the SQL panel where the connection is created.
You will not see the log when a connection for the DbExplorer is created.

Execution of the script will stop at the first statement that throws an error. The error message will also be logged to the
message panel. If the connection is made for a DbExplorer panel, the errors will only be visible in the log file.

Keep alive script

Some DBMS are configured to disconnect an application that has been idle for some time. You can define an idle time
and a SQL statement that is executed when the connection has been idle for the defined interval. This is also available
when clicking on the Connect scripts.

SQL Workbench/J User's Manual

32

The keep alive statement can not be a script, it can only be a single SQL statement (e.g. SELECT version() or
SELECT 42 FROM dual). You may not enter the trailing semicolon.

The idle time is defined im milliseconds, but you can also enter the interval in seconds or minutes by appending the
letter 's' (for seconds) or 'm' (for minutes) to the value. e.g.: 30000 (30 seconds), or 45s (45 seconds), or 10m (10
minutes).

You can disable the keep alive feature by deleting the entry for the interval but keeping the SQL statement. Thus you
can quickly turn off the keep alive feature but keep the SQL statement for the next time.

7.6.22. Schema and Catalog filters

If your database contains a lot of schema or catalogs that you don't want to be listed in the dropdown of the DbExplorer,
you can define filter expressions to hide certain entries.

The filters are defined by clicking on the Schema/Catalog Filter button. The filter dialog contains two input fields, one
to filter schema name and one to filter catalog names.

Each line of the filter definition defines a single regular expression of schema/catalog names to be excluded from the
dropdown, i.e. if a schema/catalog matches the defined name, it will not be listed in the dropdown.

The filter items are treated as regular expressions, so the standard SQL wildcards will not work here. The basic
expression is just a name (e.g. MDSYS). Comparison is always done case-insensitive. So mdsys and MDSYS will
achieve the same thing.

If you want to filter all schemas that start with a certain value, the regular expression would be: ^pg_toast.*. Note
the dot followed by a * at the end. In a regular expression the dot matches any character, and the * will allow any
number of characters to follow. The ^ specifies that the whole string must occur at the beginning of the value.

The regular expression must match completely in order to exclude the value from the drop down.

If you want to learn more about regular expressions, please have a look at http://www.regular-expressions.info/

7.6.23. Variables

It is possible to setup variables that are automatically defined when the connection for the profile is created. These
variables will be removed after the connection is closed.

Variables defined in the connection profile are overwritten by variables defined for the workspace.

7.7. Connect to Oracle with SYSDBA privilege

Connecting to Oracle with SYSDBA privilege can be done by checking the option as SYSDBA next to the username.
when using this option, you have to use an Oracle user account that is allowed to connect as SYSDBA (e.g. SYS).

7.8. Using the quick filter

The behaviour of the quick filter depends on whether tags are defined or not.

If no tags are defined at all, the quick filter will only search in the profile name. The search is done case-insensitive.
Search for prod will match any profile that has PROD or prod anywhere in the profile's name

http://www.regular-expressions.info/

SQL Workbench/J User's Manual

33

If tags are defined, the input is first checked if its one or more tags. If that is the case, the profiles are only filtered based
on the tags defined. If there is a tag named prod, and the filter value is prod, only profiles with that tag are displayed.
The profile name is not taken into account then. If the value in the filter field is not a tag, then the profiles are filtered
based on name.

Multiple tags are separated by a comma. To see a list of defined tags, press the Ctrl-Space key.

SQL Workbench/J User's Manual

34

8. Using workspaces

8.1. Overview

A workspace is a collection of editor tabs that group scripts or statements together. A workspace stores the name of
each editor tab, the cursor position for each editor, the selection and the statement history.

Each connection profile is associated with a workspace. If no workspace is explicitely chosen for a connection profile,
a workspace with the name Default is used. If not specified otherwise, workspaces are stored in the configuration
directory.

A workspace file has the extension .wksp and is a regular ZIP archive that can be opened with any ZIP tool. It
contains one text file for each editor in the workspace and some property files that store additional settings like the
divider location, the Max. Rows value or the selected catalog and schema of the DbExplorer.

It is recommended to use a different workspace for each connection profile.

Workspaces can be used to reduce the number of editor tabs being used. You can create different workspaces for
different topics you work on. One workspace that contains queries to monitor a database, one workspace that contains
everything related to a specific feature you are working on, one workspace to initialize a new environment and so on.

The workspace is saved when the window using that workspace is closed. If the option "Auto-Save workspace" is
enabled the workspace is automatically saved when a SQL statement is executed.

8.2. Creating a copy of the current workspace

To create a copy of the current workspace, use Workspace » Save workspace as After saving the workspace, the new
workspace becomes the current workspace (the old one will not be changed). You will be asked if the new workspace
should be the default profile's workspace, so that if you connect using that connection profile the new workspace will be
loaded automatically.

If the new workspace is not made the profile's workspace, the next time you connect using that connection profile, the
old workspace file will be loaded.

If you chose not to assign the new workspace right after saving it, you can later assign the currently loaded workspace
to be used by the current connection profile using: Workspace » Assign Workspace.

This feature can be used if you have a workspace that contains statements that you want to use for a new topic, but you
don't want to lose the original set of statements (that were used for a previous work).

8.3. Load a different workspace

If you want to load an existing workspace e.g. because you want to work on a different topic, you can use Workspace »
Load Workspace Again you are asked if you want to use the newly loaded workspace as the default workspace.

Workspaces loaded through this will be put into the Workspace » Recent Workspaces menu so that you can quickly
switch between workspaces you often use.

If you have a workspace loaded other than the default workspace of the current connection profile, you can quickly re-
load the default workspace through Workspace » Re-Load Profile Workspace If you do that, the current workspace will
be saved and the workspace assigned to the current connection profile will be loaded.

SQL Workbench/J User's Manual

35

8.4. Workspace and external files

By default a workspace "remembers" the external files that were loaded. The content of the loaded file will also be
stored in the workspace file. This can be configured in the Options dialog.

8.5. Workspace variables

It is possible to setup variables that are automatically defined when the workspace is loaded. These variables will be
removed when the workspace is closed or a different workspace is loaded.

Variables defined in the workspace will overwrite variables defined in the connection profile.

SQL Workbench/J User's Manual

36

9. Editing SQL Statements

9.1. Editing files

You can load and save the editor's content into external files (e.g. for re-using) them in other SQL tools.

To load a file use File » Open... or right click on the tab's label and choose Open... from the popup menu.

The association between an editor tab and the external file will be saved in the workspace that is used for the current
connection. When opening the workspace (e.g. by connecting using a profile that is linked to that workspace) the
external file will be loaded as well.

If you want to run very large SQL scripts (e.g. over 15MB) it is recommended to execute them using
WbInclude rather than loading them completely into the editor. WbInclude will not load the script into
memory, thus you can even run scripts that would not fit into memory.

9.2. Code completion

The editor can show a popup window with a list of available tables (and views) or a list of available columns for a table.
Which list is displayed depends on the position of the cursor inside the statement.

If the cursor is located in the column list of a SELECT statement and the FROM part already contains the necessary
tables, the window will show the columns available in the table. Assuming you are editing the following statement (the
| indicating the position of the caret):

SELECT p.|, p.firstname, a.zip, a.city
FROM person p
 JOIN address a ON p.id = a.person_id;

then pressing the Ctrl-Space key will show a list of columns available in the PERSON table (because the cursor is
located after the p. alias). If you put the cursor after the a.city column and press the Ctrl-Space the popup window
will list the two tables that are referenced in the FROM part of the statement. The behavior when editing the WHERE part
of an statement is similar.

When editing the list of tables in the FROM part of the statement, pressing the Ctrl-Space will pop up a list of available
tables.

If the cursor is located inside the assignment of an UPDATE statement (set foo = |,) or in the VALUES part
of an INSERT statement, the popup will contain an item (Select FK value). When selecting this item the
dialog to select a value from a referenced table will be displayed if the current column is referencing another table. For
performance reasons the check if the current column is referencing another table is only done after the item has been
selected. If no foreign key could be found, a message is displayed in the status bar.

The editor assumes that the standard semicolon is used to separate statements when doing auto-completion or using the
"Execute current" function. This can be changed to a non-standard behaviour through the options dialog so that the
editor also recognizes empty lines as a statement delimiter.

Parameters for SQL Workbench/J specific commands are also supported by the command completion. The parameters
will only be shown, if you have already typed the leading dash, e.g. WbImport -. If you press the shortcut for the
command completion while the cursor is located after the dash, a list of available options for the current comand is
shown. Once the parameter has been added, you can display a list of possible values for the parameter if the cursor is
located after the equals sign. for WbImport -mode= will display a list of allowed values for the -mode parameter.
For parameters where table names can be supplied the usual table list will be shown.

SQL Workbench/J User's Manual

37

9.3. Show hints for INSERT statements

When writing (long) INSERT statements it is often helpful to check if a specific value is actually written into the
intended column. To check the column a value corresponds to (or the vice versa), press Ctrl-# while in the column or
values list. A tool tip will appear to show the corresponding element from the "other" part of the statement. Consider the
following statement:

INSERT INTO some_table (column1, column2, column3)
VALUES
('hello', 'world', 42, 'foobar');

When the cursor is located at column1, pressing Ctrl-# will show a tool tip containing the text 'hello' as that is
the value that corresponds to column1. When the cursor is located at the number 42 pressing Ctrl-# will show the text
column3 in the tool tip.

When no matching column or value can be found, the tool tip will contain a hint that the "other" element is missing.

If the values inserted are the result of a SELECT statement, the tool tip in the insert column list will show the
corresponding column name from the SELECT statement.

9.4. Customizing keyword highlighting

The keywords that the editor can highlight are based on an internal list of keywords and information obtained from the
JDBC driver. You can extend the list of known keywords using text files located in the config directory.

SQL Workbench/J reads four different types of keywords: regular keywords (e.g. SELECT), data types (e.g.
VARCHAR), functions (e.g. upper()) and operators (e.g. JOIN). Each keyword type is read from a separate file:
keywords.wb, datatypes.wb, functions.wb and operators.wb.

The files contain one keyword per line. Case does not matter (SELECT and select are treated identically). If you
want to add a specific word to the list of global keywords, simply create a plain text file keywords.wb in the config
directory and put one keyword per line into the file, e.g:

ALIAS
ADD
ALTER

If you want to define keywords specific for a DBMS, you need to add the DBID as a prefix to the filename, e.g.
oracle.datatypes.wb.

To add the word geometry as a datatype for the editor when connected to a PostgreSQL database, create the file
postgresql.datatypes.wb in the config directory with the following contents:

geometry

The words defined for a specific database are added to the globally recognized keywords, so you don't need to repeat all
existing words in the file.

The color for each type of keyword can be changed in the options dialog.

9.5. Reformat SQL

When you analyze statements from e.g. a log file, they are not necessarily formatted in a way that can be easily read,
let alone understood. The editor of the SQL Workbench/J can reformat SQL statements into a format that's easier to
read and understand for a human being. This feature is often called pretty-printing. Suppose you have the following
statement (pasted from a log file)

SQL Workbench/J User's Manual

38

select user.* from user, user_profile, user_data
where user.user_id = user_profile.user_id and
user_profile.user_id = uprof.user_id and user_data.user_role = 1
and user_data.delete_flag = 'F' and not exists
(select 1 from data_detail where data_detail.id = user_data.id and
data_detail.flag = 'X' and data_detail.value > 42)

this will be reformatted to look like this:

SELECT user.*
FROM user,
 user_profile,
 user_data
WHERE user.user_id = user_profile.user_id
AND user_profile.user_id = uprof.user_id
AND user_data.user_role = 1
AND user_data.delete_flag = 'F'
AND NOT EXISTS (SELECT 1
 FROM data_detail
 WHERE data_detail.id = user_data.id
 AND data_detail.flag = 'x'
 AND data_detail.value > 42)

You can configure a threshold up to which sub-SELECTs will not be reformatted but put into one single line. The
default for this threshold is 80 characters. Meaning that any subselect that is shorter than 80 characters will not be
reformatted as the sub-SELECT in the above example. Please refer to Formatting options for details.

9.6. Create SQL value lists

Sometimes when you Copy & Paste lines of text from e.g. a spreadsheet, you might want to use those values as a
condition for a SQL IN expression. Suppose you a have a list of ID's in your spreadsheet each in one row of the same
column. If you copy and paste this into the editor, each ID will be put on a separate line. If you select the text, and then
choose SQL » Code tools » Create SQL List the selected text will be converted into a format that can be used as an
expression for an IN condition:

Dent
Beeblebrox
Prefect
Trillian
Marvin

will be converted to:

('Dent',
 'Beeblebrox',
 'Trillian',
 'Prefect',
 'Marvin')

The function SQL » Code tools » Create non-char SQL List is basically the same. The only difference is, that it assumes
that each item in the list is a numeric value, and no single quotes are placed around the values.

The following list:

42
43
44

SQL Workbench/J User's Manual

39

45

will be converted to:

(42, 43, 44, 45)

These two functions will only be available when text is selected which spans more then one line.

9.7. Programming related editor functions

The editor of the SQL Workbench/J offers two functions to aid in developing SQL statements which should be used
inside your programming language (e.g. for SQL statements inside a Java program).

9.7.1. Copy Code Snippet

Suppose you have created the SQL statement that you wish to use inside your application to access your DBMS. The
menu item SQL » Code tools » Copy Code Snippet will create a piece of code that defines a String variable which
contains the current SQL statement (or the currently selected statement if any text is selected).

If you have the following SQL statement in your editor:

SELECT p.name,
 p.firstname,
 a.street,
 a.zipcode,
 a.phone
FROM person p,
 address a
WHERE p.person_id = a.person_id;

When copying the code snippet, the following text will be placed into the clipboard

String sql="SELECT p.name, \n" +
" p.firstname, \n" +
" a.street, \n" +
" a.zipcode, \n" +
" a.phone \n" +
"FROM person p, \n" +
" address a \n" +
"WHERE p.person_id = a.person_id; \n";

You can now paste this code into your application.

If you don't like the \n character in your code, you can disable the generation of the newline characters in you
workbench.settings file. See Manual settings for details. You can also customize the prefix (String sql =)
and the concatenation character that is used, in order to support the programming language that you use.

9.7.2. Clean Java code

When using the Copy Code Snippet feature during development, the SQL statement usually needs refinement after
testing the Java class. You can Copy & Paste the generated Java code into SQL Workbench/J, then when you select
the pasted text, and call SQL » Code tools » Clean Java Code the selected text will be "cleaned" from the Java stuff
around it. The algorithm behind that is as follows: remove everything up to the first " at the beginning of the line. Delete
everything up to the first " searching backwards from the end of the line. Any trailing white-space including escaped
characters such as \n will be removed as well. Lines starting with // will be converted to SQL single line comments
starting with -- (keeping existing quotes!). The following code:

SQL Workbench/J User's Manual

40

String sql="SELECT p.name, \n" +
" p.firstname, \n" +
" a.street, \n" +
//" a.county, \n" +
" a.zipcode, \n" +
" a.phone \n" +
"FROM person p, \n" +
" address a \n" +
"WHERE p.person_id = a.person_id; \n"

will be converted to:

SELECT p.name,
 p.firstname,
 a.street,
--" a.county, " +
 a.zipcode,
 a.phone
FROM person p,
 address a
WHERE p.person_id = a.person_id;

9.7.3. Support for prepared statements

For better performance Java applications usually make use of prepared statements. The SQL for a prepared statement
does not contain the actual values that should be used e.g. in the WHERE clause, but uses quotation marks instead. Let's
assume the above example should be enhanced to retrieve the person information for a specific ID. The code could look
like this:

String sql="SELECT p.name, \n" +
" p.firstname, \n" +
" a.street, \n" +
" a.zipcode, \n" +
" a.phone \n" +
"FROM person p, \n" +
" address a \n" +
"WHERE p.person_id = a.person_id; \n" +
" AND p.person_id = ?";

You can copy and clean the SQL statement but you will not be able to execute it, because there is no value available for
the parameter denoted by the question mark. To run this kind of statements, you need to enable the prepared statement
detection using SQL » Settings » Detect prepared statements

Once the prepared statement detection is enabled, SQL Workbench/J will examine each statement to check whether it
is a prepared statement. This examination is delegated to the JDBC driver and does cause some overhead when running
the statement. For performance reasons you should disable the detection, if you are not using prepared statements in the
editor (especially when running large scripts).

If a prepared statement is detected, you will be prompted to enter a value for each defined parameter. The dialog will
list all parameters of the statement together with their type as returned by the JDBC driver. Once you have entered
a value for each parameter, clicking OK will execute the statement using those values. When you execute the SQL
statement the next time, the old values will be preserved, and you can either use them again or modify them before
running the statement.

Once you are satisfied with your SQL statement, you can copy the statement and paste the Java code into your program.

Prepared statements are supported for SELECT, INSERT, UPDATE and DELETE statements.

http://java.sun.com/javase/7/docs/api/java/sql/PreparedStatement.html

SQL Workbench/J User's Manual

41

This feature requires that the getParameterCount() and getParameterType() methods of the
ParameterMetaData class are implemented by the JDBC driver and return the correct information
about the available parameters.

The following drivers have been found to support (at least partially) this feature:

• PostgreSQL, driver version 8.1-build 405

• H2 Database Engine, Version 1.0.73

• Apache Derby, Version 10.2

• Firebird SQL, Jaybird 2.0 driver

• HSQLDB, version 1.8.0

Drivers known to not support this feature:

• Oracle 11g driver (ojdbc6.jar, ojdbc7.jar)

• Microsoft SQL Server 2000/2005 driver (sqljdbc4.jar)

http://java.sun.com/javase/7/docs/api/java/sql/ParameterMetaData.html#getParameterCount()
http://java.sun.com/javase/7/docs/api/java/sql/ParameterMetaData.html#getParameterType(int)
http://www.postgresql.org
http://www.h2database.com
http://db.apache.org/derby/
http://www.firebirdsql.org/
http://hsqldb.sourceforge.net

SQL Workbench/J User's Manual

42

10. Working with bookmarks

10.1. Defining bookmarks

A bookmark inside the editor is defined by adding the keyword @WbTag followed by the name of the bookmark into a
SQL comment:

-- @WbTag delete everything
truncate table orders,order_line,customers;
commit;

The keyword is not case sensitive, @wbtag will work just as wel as @WBTAG, or @WbTag. A multiline comment can be
used as well as a single line comment.

The annotations for naming a result can additionally be included in the bookmark list. This is enabled in the options
panel for the editor.

The names of procedures and functions can also be used as bookmarks if enabled in the bookmark options

10.2. Jumping to a bookmark

To jump to a bookmark select Tools » Bookmarks. A dialog box with all defined bookmarks will be displayed. You can
filter the list of displayed bookmarks by entering a value in the input field. Depending on the option Filter on name only
the value will either be compared only against the bookmark name. If that option is disabled then the bookmark name
and the name of the SQL tab will be checked for the entered value.

The selection in the bookmark list can be moved with the UP/DOWN keys even when the cursor is
located in the filter input field.

If the option Only for current tab is enabled, then the dialog will open showing only bookmarks for the current tab.

10.3. Configuring the display of the bookmark list

There are two options to influence how the list of bookmarks is displayed. Both options are available when displaying
the context menu for the list header (usually through a click with the right mouse button):

• Remember column widths - if this is enabled, the columns are not automatically adjusted to the width of the content.
Instead the list remembers whatever width was adjusted.

• Remember sort order - by default the list is sorted by the name of the bookmark. When this option is selected,
whatever sort order is selected (by clicking on the column headers) will be saved and restored the next time the
dialog is opened.

SQL Workbench/J User's Manual

43

11. Creating stored procedures and triggers

SQL Workbench/J will split statements based on the SQL terminator ; and send each statement unaltered to the DBMS.

When executing statements such as CREATE PROCEDURE which in turn contain valid SQL statements, delimited with
a ; the SQL Workbench/J will send everything up to the first semicolon to the backend (because the ; terminates the
SQL statement) In case of a CREATE PROCEDURE statement this will obviously result in an error as the statement is
not complete.

To be able to run DDL statements with embedded ; characters, SQL Workbench/J needs to know where a statements
ends. To specify the end of a statement with embedded ; the so called "alternate delimiter" is used. This chapter
describes how the alternate delimiter is used by SQL Workbench/J

11.1. PostgreSQL

The body of a function in Postgres is a character literal. Because a delimiter inside a character literal does not define the
end of the statement, no special treatment is needed for Postgres.

11.2. Oracle PL/SQL

This is an example of a CREATE PROCEDURE which will NOT work due to the embedded semicolon in the procedure
source itself.

CREATE OR REPLACE FUNCTION proc_sample RETURN INTEGER
IS
 l_result INTEGER;
BEGIN
 SELECT max(col1) INTO l_result FROM sometable;
 RETURN l_result;
END;

When executing this script, Oracle would return an error because SQL Workbench/J will send everything up to the
keyword INTEGER to the database. Obviously that fragment would not be correct.

The solution is to terminate the script with a character sequence that is called the "alternate delimiter" which can be
defined in the connection profile. To be compatible with SQL Developer and SQL*Plus it is recommended to set the
alternate delimiter to a forward slash (/).

The script needs to be written like this:

CREATE OR REPLACE FUNCTION proc_sample RETURN INTEGER
IS
 l_result INTEGER;
BEGIN
 SELECT max(col1) INTO l_result FROM sometable;
 RETURN l_result;
END;
/

Note the trailing forward slash (/) at the end in order to "turn on" the use of the alternate delimiter. If you run scripts
with embedded semicolons and you get an error, please verify the setting for your alternate delimiter.

The standard delimiter (the semicolon) and the alternate delimiter can be mixed in a single script. Whenever a PL/
SQL block (either a stored procedure or an anonymous block) is encountered, SQL Workbench/J expects the alternated
delimiter to terminate that block. This follows the same rules as used in SQL*Plus.

http://docs.oracle.com/cd/E11882_01/server.112/e16604/ch_four.htm#i1039663

SQL Workbench/J User's Manual

44

The following script will therefore work when connected to an Oracle database:

drop table sometable cascade constraints;
create table sometable
(
 col1 integer not null
);

create or replace function proc_sample return integer
is
 l_result integer;
begin
 select max(col1) into l_result from sometable;
 return l_result;
end;
/

11.3. Other DBMS

When is the alternate delimiter used?

For all other DBMS, the use of the alternate delimiter is defined by the last delimiter used in the script.

As soon as the statement (or script) that you execute ends with the alternate delimiter, the alternate delimiter is used to
separate all SQL statements. When you execute selected text from the editor, be sure to select the alternate delimiter as
well, otherwise it will not be recognized (if the alternate delimiter is not selected, the statement to be executed does not
end with the alternate delimiter).

This means a script must use the alternate delimiter for all statements in the script. The following script will not work,
because the last statement is terminated with the alternate delimiter and thus SQL Workbench/J assumes all statements
are delimited with that. As the CREATE TABLES statements are delimited with the standard delimiter, they are not
recognized as a separate statement and thus the script is sent as a single statement to the server.

create table orders
(
 order_id integer not null primary key,
 customer_id integer not null,
 product_id integer not null,
 pieces integer not null,
 order_date date not null
);

create table orders_audit_log
(
 order_id integer not null,
 delete_date timestamp not null
);

create trigger orders_audit_log
 for orders
 before delete
as
begin
 insert into audit_log (id, delete_date) values (old.order_id, current_timestamp);
end;

SQL Workbench/J User's Manual

45

/

The solution is to terminate every statement with the alternate delimiter:

create table orders
(
 order_id integer not null primary key,
 customer_id integer not null,
 product_id integer not null,
 pieces integer not null,
 order_date date not null
)
/

create table orders_audit_log
(
 order_id integer not null,
 delete_date timestamp not null
)
/

create trigger orders_audit_log
 for orders
 before delete
as
begin
 insert into audit_log (id, delete_date) values (old.order_id, current_timestamp);
end;
/

SQL Workbench/J User's Manual

46

12. Using SQL Workbench/J

12.1. Displaying help

You have two possibilities to display help for SQL Workbench/J: a HTML a PDF version of the manual.

The HTML help is available through the menu item Help » Contents It is expected that the HTML manual is stored in a
directory called manual in the same directory where sqlworkbench.jar is located. This is automatically the case
when you extract the distribution archive with sub-directories.

You can choose to display a single-page version of the HTML help (easier to search) or a multi-page version of the help
that is easier to navigate. This can be changed in the options dialog, that is accessible from Tools » Option.

The PDF manual can be displayed by selecting Help » Manual. In order to be able to display the PDF manual, you need
to define the path to the executable for the PDF reader in the General options section of the options dialog.

The file SQLWorkbench-Manual.pdf must be available in the directory where sqlworkbench.jar is located.

When connected to a database, the menu item Help » DBMS Manual will display the online manual for the current
DBMS (if there is one). Where possible the link will display the manual that corresponds to the version of the current
connection.

The URL that is used to display the manual can be changed in the configuration file workbench.settings.

12.2. Resizing windows

Every window that is opened by SQL Workbench/J for the first time is displayed with a default size. In certain cases it
can happen that not all labels are readable or all controls are visible on the window. This can happen, e.g. when a large
default font is selected (or defined through the look and feel).

Every window in SQL Workbench/J can be resized and will remember its size. So in case not everything is readable on
a dialog, just resize the window so that the missing parts become visible, and that size will be kept for the future.

12.3. Executing SQL statements

12.3.1. Control the statement to be executed

There are three different ways to execute a SQL command

Execute the selected text

When you press Ctrl-E or select SQL » Execute selected the currently selected text will be send to the DBMS for
execution. If no text is selected the complete contents of the editor will be send to the database.

Execute current statement

When you press Ctrl-Enter or select SQL » Execute current the current statement will be executed. The "current"
statement will be the text between the next delimiter before the current cursor position and the delimiter after the cursor
position.

Example (| indicating the cursor position)

SQL Workbench/J User's Manual

47

SELECT firstname, lastname FROM person;

DELETE FROM person| WHERE lastname = 'Dent';
COMMIT;

When pressing Ctrl-Enter the DELETE statement will be exectuted

You can configure the editor to use the statement that is defined by the current line rather than the cursor location when
using Execute current.

Consider the following editor contents:

SELECT firstname, lastname FROM person; |
DELETE FROM person WHERE lastname = 'Dent';
COMMIT;

If the option to use the current line is disabled and the cursor is located after the semicolon in the third line, Execute
current will execute the SELECT statement because the cursor is logically located in the statement after the select.

If that option is enabled and the cursor is located after the semicolon in the third line, Execute current will execute
the DELETE statement because the statement in the current line is the select statement. If there are multiple SQL
statements in the current line, the first statement will be executed.

You can configure SQL Workbench/J to automatically jump to the next statement, after executing the current statement.
Simply select SQL » Settings » Auto advance to next The check mark next to the menu item indicates if this option is
enabled. This option can also be changed through the Options dialog

Execute All

If you want to execute the complete text in the editor regardless of the current selection, use the Execute all command.
Either by pressing Ctrl-Shift-E or selecting SQL » Execute All

When executing all statements in the editor you have to delimit each statement, so that SQL Workbench/J can identify
each statement. If your statements are not delimited using a semicolon, the whole editor text is sent as a single statement
to the database. Some DBMS support this (e.g. Microsoft SQL Server), but most DBMS will throw an error in that case.

A script with two statements could look like this:

UPDATE person SET numheads = 2 WHERE name='Beeblebrox';
COMMIT;

or:

DELETE FROM person;
DELETE FROM address;
COMMIT;

INSERT INTO person
(id, firstname, lastname)
VALUES
(1, 'Arthur', 'Dent');

INSERT INTO person
(id, firstname, lastname)
VALUES
(4, 'Mary', 'Moviestar');

SQL Workbench/J User's Manual

48

INSERT INTO person
(id, firstname, lastname)
VALUES
(2, 'Zaphod', 'Beeblebrox');

INSERT INTO person
(id, firstname, lastname)
VALUES
(3, 'Tricia', 'McMillian');

COMMIT;

You can specifiy an alternate delimiter that can be used instead of the semicolon. See the description of the alternate
delimiter for details. This is also needed when running DDL scripts (e.g. for stored procedures) that contain semicolons
that should not delimit the statements.

As long as at least one statement is running the title of the main window will be prefixed with the » sign. Even if the
main window is minimized you can still see if a statement is running by looking at the window title.

You can use variables in your SQL statements that are replaced when the statement is executed. Details on how to use
variables can be found in the chapter Variable substitution.

JDBC drivers do not support multi-threaded execution of statements on the same physical connection. If you want to
run two statements at the same time, you will need to enable the Separate connection per tab option in your connection
profile. In this case SQL Workbench/J will open a physical connection for each SQL tab, so that statements in the
different tabs can run concurrently.

Statement history

When executing a statement the contents of the editor is put into an internal buffer together with the information about
the text selection and the cursor position. Even when you select a part of the current text and execute that statement, the
whole text is stored in the history buffer together with the selection information. When you select and execute different
parts of the text and then move through the history you will see the selection change for each history entry.

The previous statement can be recalled by pressing Alt-Left or choosing SQL » Previous Statement statement from the
menu. Once the previous statement(s) have been recalled the next statement can be shown using Alt-Right or choosing
SQL » Next Statement from the menu. This is similar to browsing through the history of a web browser.

You can clear the statement history for the current tab, but selecting SQL » Clear history

When you clear the content of the editor (e.g. by selecting the whole text and then pressing the Del key)
this will not clear the statement history. When you load the associated workspace the next time, the editor
will automatically display the last statement from the history. You need to manually clear the statement
history, if you want an empty editor the next time you load the workspace.

12.4. Displaying results

When you run SQL statements that produce a result (such as a SELECT statement) these results will be displayed in the
lower pane of the window, next to the message panel. For each result that is returned from the server, one tab (labeled
"Result") will be created. If you select and execute three SELECT statements, the lower pane will show three result tabs
and the message tab. If your statement(s) did not produce any result, only the messages tab will be displayed.

SQL Workbench/J will read all rows returned by your statement into memory. When retrieving large
results you might run out of memory. To adjust the memory available to SQL Workbench/J please refer to
this chapter.

SQL Workbench/J User's Manual

49

When you run a SQL statement, the current results will be cleared and replaced by the new results. You can turn this
off by selecting SQL » Settings » Append new results. Every result that is retrieved while this option is turned on, will
be added to the set of result tabs, until you de-select this option. This can also be toggled using the button () on the

toolbar. Additional result tabs can be closed using Data » Close result. You can configure the default behavior for new
editor tabs in the options dialog.

You can also run stored procedures that return result sets. These result will be displayed in the same way. For DBMS's
that support multiple result sets from a single stored procedure (e.g. Microsoft SQL Server), one result tab will be
displayed for each result returned.

12.4.1. Limiting result sizes

To prevent retrieving an large amount of rows (and possibly running out of memory), the maximum number of rows
that are retrieved can be defined for each SQL panel in the "Max. Rows" input field of the status bar. This value will be
stored in the workspace that is associated with the connection profile.

A default value that will be used for newly opened SQL tabs can be defined in the options dialog.

12.4.2. Displaying values with embedded newlines

Data from VARCHAR or CHAR columns is displayed as a single-line if the column's max. size is below 250 characters. If
you have data in smaller columns that contains newlines (line breaks) and you want to display directly in the result set,
please adjust the limit to match your needs. The limit can be changed in the Data Display Options.

12.4.3. Naming result tabs

There are two ways to assign a name to the result tab of a query:

• By specifying the annotation @WbResult. For details please see the chapter about annotations

• You can automatically use the first table name from a SELECT statement to be used for the result name in the Data
display options.

12.5. Dealing with BLOB and CLOB columns

SQL Workbench/J supports reading and writing BLOB (Binary Large OBject) or CLOB (Character Large OBject)
columns from and to external files. BLOB clumns are sometimes also referred to as binary data. CLOB columns are
sometimes also referred to as LONG VARCHAR. The exact data type depends on the DBMS used.

To insert and update LOB columns the usual INSERT and UPDATE statements can be used by using a special
placeholder to define the source for the LOB data. When updating the LOB column, a different placeholder for BLOB
and CLOB columns has to be used as the process of reading and sending the data is different for binary and character
data.

When working with Oracle, only the 10g driver supports the standard JDBC calls used by SQL
Workbench/J to read and write the LOB data. Earlier drivers will not work as described in this chapter.

SQL Workbench/J User's Manual

50

12.5.1. Updating BLOB data through SQL

To update a BLOB (or binary) column, use the placeholder {$blobfile=path_to_file} in the place where the
actual value has to occur in the INSERT or UPDATE statement:

UPDATE theTable
 SET blob_col = {$blobfile=c:/data/image.bmp}
WHERE id=24;

SQL Workbench/J will rewrite the UPDATE statement and send the contents of the file located in c:/data/
image.bmp to the database. The syntax for inserting BLOB data is similar. Note that some DBMS might not allow
you to supply a value for the blob column during an insert. In this case you need to first insert the row without the blob
column, then use an UPDATE to send the blob data. You should make sure to update only one row by specifying an
appropriate WHERE clause.

INSERT INTO theTable
(id, blob_col)
VALUES
(42,{$blobfile=c:/data/image.bmp});

This will create a new record with id=42 and the content of c:/data/image.bmp in the column blob_col

12.5.2. Updating CLOB data through SQL

The process of updating or inserting CLOB data is identical to the process for BLOB data. The only difference is in the
syntax of the placeholder used to specify the source file. Firstly, the placeholder has to start with {$clobfile= and
can optionally contain a parameter to define the encoding of the source file.

UPDATE theTable
 SET clob_col = {$clobfile=c:/data/manual.html encoding=utf8}
WHERE id=42;

If you ommit the encoding parameter, SQL Workbench/J will leave the data conversion to the JDBC driver (technically,
it will use the PreapredStatement.setAsciiStream() method whereas with an encoding it will use the
PreparedStatement.setCharacterStream() method).

The format of the {$clobfile=} or {$blobfile=} parameter has to be entered exactly as described
here. You may not put e.g. spaces before or after the equal sign or the braces. If you do this, SQL
Workbench/J will not recognize the parameter and will pass the statement "as is" to the JDBC driver.

12.5.3. Saving BLOB data to a file using SQL

To save the data stored in a BLOB column, the command WbSelectBlob can be used. The syntax of this command
is similar to the regular SELECT command except that a target file has to be specified where the read data should be
stored.

You can also use the WbExport command to export data. The contents of the BLOB columns will be saved into
separate files. This works for both export formats (XML and Text).

12.5.4. BLOB data in the result set

When the result of your SELECT query contains BLOB columns, they will be displayed as (BLOB) together with a
button. When you click on the button a dialog will be displayed allowing you to save the data to a file, view the data as
text (using the selected encoding), display the blob as an image or display a hex view of the blob.

SQL Workbench/J User's Manual

51

When displaying the BLOB content as a text, you can edit the text. When saving the data, the entered text will be
converted to raw data using the selected encoding.

The window will also let you open the contents of the BLOB data with a predefined external tool. The tools that are
defined in the options dialog can be selected from a drop down. To open the BLOB content with one of the tools,
select the tool from the drop down list, then click on the button Open with next to the external tools drop down. SQL
Workbench/J will then retrieve the BLOB data from the server, store it in a temporary file on your hard disk, and run
the selected application, passing the temporary file as a parameter.

From within this information dialog, you can also upload a file to be stored in that BLOB column. The file contents will
not be sent to the database server until you actually save the changes to your result set (this is the same for all changes
you make directly in the result set, for details please refer to Editing the data)

When using the upload function in the BLOB info dialog, SQL Workbench/J will use the file content for
any subsequent display of the binary data or the the size information in the information dialog. You will
need to re-retrieve the data, in order to use the blob data from the server.

12.6. Performance tuning when executing SQL

There are some configuration settings that affect the performance of SQL Workbench/J. On slow computers it is
recommended to turn off the usage of the animated icon as the indicator for a running statement.

When running large scripts, the feedback which statement is executed can also slow down the execution. It is
recommended to either turn off the feedback using WBFEEDBACK OFF or by consolidating the script log

When running imports or exports it is recommended to turn off the progress display in the statusbar that shows the
current row that is imported/exported because this will slow down the process as well. In both cases you can use -
showProgress to turn off the display (or set it to a high number such as 1000) in order to reduce the overhead
caused by updating the screen.

12.7. Using workspaces

The complete history for all editor tabs is saved and loaded into one file, called a workspace. These workspaces can be
saved and loaded to restore a specific editing context. You can assign a saved workspace to a connection profile. When
the connection is established, the workspace is loaded into SQL Workbench/J. Using this feature you can maintain a
completely different set of statements for different connections.

If you do not assign a workspace to a connection profile, a workspace with the name Default.wksp will be used for
storing the statement history. This default workspace is shared between all profiles that have no workspace assigned.

To save the current SQL statement history and the visible tabs into a new workspace, select Workspace » Save
Workspace as....

The default file extension for workspaces is wksp.

Once you have loaded a workspace, you can save it with Workspace » Save Workspace. The current workspace is
automatically saved, when you exit SQL Workbench/J.

An existing workspace can be loaded with Workspace » Load Workspace

If you have an external file open in one of the editor tabs, the filename itself will be stored in workspace. When loading
the workspace SQL Workbench/J will try to load the external file again. If the file does not exist, the last history entry
from the saved history for that tab will be displayed.

The workspace file itself is a normal ZIP file, which contains one file with the statement history for each tab. The
individual files can be extracted from the workspace using your favorite UNZIP tool.

SQL Workbench/J User's Manual

52

12.8. Saving and loading SQL scripts

The text from the current editor can be saved to an external file, by choosing File » Save or File » Save as. The filename
for the current editor will be remembered. To close the current file, select File » Discard file (Ctrl-F4) or use the
context menu on the tab label itself.

Detaching a file from the editor will remove the text from editor as well. If you only want to detach the
filename from the editor but keep the text, then press Ctrl-Shift-F4 or hold down the Shift key while
selecting the Discard menu item.

When you load a SQL script and execute the statements, be aware that due to the history management in SQL
Workbench/J the content of the external file will be placed into the history buffer. If you load large files, this might lead
to massive memory consumption. Currently only the number of statements put into the history can be controlled, but
not the total size of the history itself. You can prevent files from being put into the history by unchecking the option
"Files in history" in the Editor section of the options dialog.

12.9. Displaying the structure of tables

The command describe can be used to display the structure of a view or table. You can also display information
about the database object at the cursor by using SQL » Object info. This function is also available in the context menu
of the editor.

When the menu item is invoked using the mouse, holding down the CTRL key will return dependent object
information as well (e.g. indexes, foreign keys).

You can configure this function to always include dependent objects by adding a configuration property.

12.10. Viewing server messages

12.10.1. PostgreSQL

PostgreSQL supports sending of messages to the client using the RAISE statement in PL/pgSQL. The following
function will display a result set (with the number 42) and the message area will contain the message Thinking hard...

CREATE OR REPLACE FUNCTION the_answer()
 RETURNS integer
 LANGUAGE plpgsql
AS
$body$
BEGIN
 RAISE NOTICE 'Thinking hard...';
 RETURN 42;
END;
$body$

12.10.2. Oracle

For Oracle the DBMS_OUTPUT package is supported. Support for this package can be turned on with the
ENABLEOUT command. If this support is not turned on, the messages will not be displayed. This is the same as using
the SET SERVEROUTPUT ON command in SQL*Plus.

If you want to turn on support for DBMS_OUTPUT automatically when connecting to an Oracle database, you can put
the set serveroutput on command into the pre-connect script.

SQL Workbench/J User's Manual

53

Any message "printed" with DBMS_OUTPUT.put_line() will be displayed in the message part after the SQL
command has finished. Please refer to the Oracle documentation if you want to learn more about the DBMS_OUTPUT
package.

dbms_output.put_line("The answer is 42");

Once the command has finished, the following will be displayed in the Messages tab.

The answer is 42

12.10.3. MS SQL Server

For MS SQL Server, any message written with the PRINT command will be displayed in the Messages tab after the
SQL command has finished. The PRINT command is usually used in stored procedures for logging purposes, but it can
also be used as a command on its own:

PRINT "Deleting records...";
DELETE from my_table WHERE value = 42;
PRINT "Done."

This will execute the DELETE. Once this script has finished, the Messages tab will contain the text:

Deleting records...
Done.

Due to the way the JDBC API works, the messages are only show after the statement has finished (this is different to
e.g. SQL Server Management Studio where the messages are displayed as soon as PRINT is called, even when the
overall script or procedure is still running.

12.10.4. Other database systems

If your DBMS supports something similar, please let me know. I will try to implement it - provided I have free access
to the DBMS. Please send your request to <support@sql-workbench.net>.

12.11. Editing data

Once the data has been retrieved from the database, it can be edited directly in the result set. SQL Workbench/J assumes
that enough columns have been retrieved from the table so that at a unique identifier is available to identify the rows to
be updated.

If you have primary keys defined for the underlying tables, those primary key columns will be used for the WHERE
statements for UPDATE and DELETE. If no primary key is found, the unique indexes for the table will be retrieved. The
first unique index found that only consists of columns defined as NOT NULL will be used.

If no PK or unique index can be found, the custom PK Mapping will be checked. If still no PK columns can be found,
you will be prompted to select the key columns based on the current result set.

The changes (modified, new or deleted rows) will not be saved to the database until you choose Data »
Save Changes to Database.

If the update is successful (no database errors) a COMMIT will automatically be sent to the database (if autocommit is
turned off).

SQL Workbench/J User's Manual

54

If your SELECT was based on more than one table, you will be prompted to specify which table should be updated.
It cannot be detected reliably which column belongs to which of the tables from the select statement. When updating
a result from multiple tables, only columns from the chose update table should be changed, otherwise incorrect SQL
statements will be generated.

If no primary (or unique) key can be found for the update table, you will be prompted to select the columns that should
be used to uniquely identify a row in the update table.

If an error is reported during the update, a ROLLBACK will automatically be sent to the database. The COMMIT or
ROLLBACK will only be sent if autocommit is turned off.

Columns containing BLOB data will be displayed with a ... button. By clicking on that button, you can view the blob
data, save it to a file or upload the content of a file to the DBMS. Please refer to BLOB support for details.

When editing, SQL Workbench/J will highlight columns that are defined as NOT NULL in the database. You can turn
this feature off, or change the color that is used in the options dialog.

When editing date, timestamp or time fields, the format specified in the options dialog is used for parsing
the entered value and converting that into the internal representation of a date. The value entered must
match the format defined there.

If you want to input the current date and time you can use now, today, sysdate, current_timestamp,
current_date instead. This will then use the current date & time and will convert this to the approriate data type for
that column. e.g. now will be converted to the current time for a time column, the current date for a date column and
the current date/time for a timestamp column. These keywords also work when importing text files using WbImport or
importing a text file into the result set. The exact keywords that are recognized can be configure in the settings file

If the option Empty String is NULL is disabled for the current connection profile, you can still set a column's value to
null when editing it. To do this, double click the current value, so that you can edit it. In the context menu (right mouse
button) the option "Set to NULL" is available. This will clear the value and set it to NULL. You can assign a shortcut to
this action, but the shortcut will only be active when editing a value inside a column.

12.12. Deleting rows from the result

To delete a row from the result, select Data » Delete Row from the menu. This will remove the currently selected row(s)
from the result and will mark them for deletion once the changes are saved. No foreign key checks will be done when
using this option.

The generated DELETE statements will fail if the deleted row(s) are still referenced by another table. In that case, you
can use Delete With Dependencies.

12.13. Sorting the result

The result will be displayed in the order returned by the DBMS (i.e. if you use an ORDER BY in your SELECT the
display will be displayed as sorted by the DBMS).

You can change the sorting of the displayed data by clicking on the header of the column that should be used for
sorting. After the first click the data will be sorted ascending (lower values at the top). If you click on the column again
the sort order will be reversed. The sort order will be indicated by a little triangle in the column header. If the triangle
points upward the data is sorted ascending, if it points downward the data is sorted descending. Clicking on a column
will remove any previous sorting (including the secondary columns) and apply the new sorting.

If you want to sort by more than one column, hold down the Ctrl key will clicking on the (second) header. The initial
sort order is ascending for that additional column. To switch the sort order hold down the Ctrl key and click on the
column header again. The sort order for all "secondary" sort columns will be indicated with a slightly smaller triangle
than the one for the primary sort column.

SQL Workbench/J User's Manual

55

To define a different secondary sort column, you first have to remove the current secondary column. This can be done
by holding down the Shift key and clicking on the secondary column again. Note that the data will not be resorted.
Once you have removed the secondary column, you can define a different secondary sort column.

By default SQL Workbench/J will use "ASCII" sorting which is case-sensitive and will not sort special characters
according to your language. You can change the locale that is used for sorting data in the options dialog under the
category "Data Display". Sorting using a locale is a bit slower than "ASCII" sorting.

12.14. Filtering the result

Once the data has been retrieved from the server it can be filtered without re-retrieving it. You can define the filter in
two ways: either select the filter columns and their filter values manually, or create a filter from the currently selected
values in the result set.

The filter is applied on the data that is retrieved from the database. The data will not be reloaded from the
database when you define a filter.

12.14.1. Defining a filter manually

To define a filter, click on the Filter button () in the toolbar or select Data » Filter data. A dialog will appear
where you can define a filter for the current result set. Each line in the filter dialog defines an expression that will be
applied to the column selected in the first drop down. If you select * for the column, the filter condition will be applied
to all columns of the result set.

The value expression for a column does not accept SQL expressions! You can only compare the column to
a constant, not to the result of a SQL function (such as CURRENT_DATE or now()) If you need this kind
of filter, you have to use a SQL statement with the approriate WHERE condition.

To add a multi-column expression, press the More button, to create a new line. To remove a column expression

from the filter, click the Remove () button. For character based column data, you can select to ignore the case
of the column's data when applying the expression, i.e. when Ignore case is selected, the expression 'NAME =
arthur' will match the column value 'Arthur', and 'ARTHUR'.

By default, the column expressions are combined with an OR, i.e. that a row will be displayed if at least one of the
column expressions evaluates to true. If you want to view only rows where all column expressions must match, select
the AND radio button at the top of the dialog.

Once you have saved a filter to an external file, this filter will be available in the pick list, next to the filter icon. The
list will show the last filters that were saved. The number of items displayed in this drop down can be controlled in the
settings file.

12.14.2. Defining a filter from the selection

You can also quickly filter the data based on the value(s) of the currenlty selected column(s). To apply the filter, select

the column values by which you want to filter then click on the Quickfilter button () in the toolbar or select
Data » Filter by value from the menu bar.

Using the Alt key you can select individual columns of one or more rows. Together with the Ctrl key you can select
e.g. the first, third and fourth column. You can also select the e.g. second column of the first, second and fifth row.

SQL Workbench/J User's Manual

56

Whether the quick filter is available depends on the selected rows and columns. It will be enabled when:

• You have selected one or more columns in a single row

• You have selected one column in multiple rows

If only a single row is selected, the quick filter will use the values of the selected columns combined with AND to define
the filter (e.g. username = 'Bob' AND job = 'Clerk'). Which columns are used depends on the way you select the row
and columns. If the whole row in the result is selected, the quick filter will use the value of the focused column (the one
with the yellow rectangle), otherwise the individually selected columns will be used.

If you select a single column in multiple rows, this will create a filter for that column, but with the values will be
combined with OR (e.g. name = 'Dent' OR name = 'Prefect'). The quick filter will not be available if you select more
than one column in multiple rows.

Once you have applied a quick filter, you can use the regular filter definition dialog to check the definition of the filter
or to further modify it.

12.15. Running stored procedures

Stored procedures can be executed by using the SQL Workbench/J command WbCall which replaces the standard
commands available for the DBMS (e.g. CALL or EXECUTE). By using a special command, additional checks can be
carried out by SQL Workbench/J. This is especially necessary when dealing with OUT parameters or REF CURSORS.

The simplest way to run a stored procedure is:

WbCall my_proc();

When using Microsoft SQL Server, WbCall is not necessary as long as the stored procedure does not have OUT or REF
CURSOR parameters. So with SQL Server you can simply write:

sp_who2;

To run the stored procedure sp_who2 and to display it's results.

For more details on running a stored procedure with OUT parameters or REF CURSORS please refer to the description
of the WbCall command.

12.16. Export result data

You can export the data of the result set into local files of the following formats:

• HTML

• SQL statements (INSERT, UPDATE or DELETE & INSERT)

• XML format

• Tab separated text file. Columns are separated with a tab, rows are separated with a newline character

• Spreadsheet Format (OpenDocument, Microsoft Excel)

In order to write the proprietary Microsoft Excel format, additional libraries are needed. Please refer to Exporting Excel
files for details.

SQL Workbench/J User's Manual

57

To save the data from the current result set into an external file, choose Data » Save Data as You will be prompted for
the filename. On the right side of the file dialog you will have the possibility to define the type of the export. The export
parameters on the right side of the dialog are split into two parts. The upper part defines parameters that are available
for all export types. These are the encoding for the file, the format for date and date/time data and the columns that
should be exported.

All format specific options that are available in the lower part, are also available when using the WbExport command.
For a detailed discussion of the individual options please refer to that section.

The options SQL UPDATE and SQL DELETE/INSERT are only available when the current result has a single table
that can be updated, and the primary key columns for that table could be retrieved. If the current result does not have
key columns defined, you can select the key columns that should be used when creating the file. If the current result is
retrieved from multiple tables, you have to supply a table name to be used for the SQL statements.

Please keep in mind that exporting the data from the result set requires you to load everything into memory. If you need
to export data sets which are too big to fit into memory, you should use the WbExport command to either create SQL
scripts or to save the data as text or XML files that can be imported into the database using the WbImport command.
You can also use SQL » Export query result to export the result of the currently selected SQL statement.

12.17. Copy data to the clipboard

You can also copy the data from the result into the system clipboard in four different formats.

• Text (tab separated)

This will use a tab as the column separator, and will not quote any values. The end-of-line sequence will be a newline
(Unix style) and the column headers will be part of the copied data. Special characters (e.g. newlines) in the actual
data will not be replaced (as it is possible with the WbExport command).

When you hold down the Shift key when you select the menu item, the column headers will not be copied to the
clipboard. When you hold down the Ctrl key when selecting the menu item, you can choose which columns should
be copied to the clipboard. Pressing Shift and Ctrl together is also supported.

• SQL (INSERT, UPDATE, or DELETE & INSERT)

The end-of-line sequence will be a newline (Unix style). No cleanup of data will be done as it is possible with the
WbExport command, apart from correctly quoting single quotes inside the values (which is required to generate valid
SQL)

• DbUnit XML

For this option to be available DbUnit, Log4j and slf4j libraries must be copied into the same directory where
sqlworkbench.jar is located.

The following libraries are needed:

• dbunit-2.3.0.jar (or later)

• slf4j-api-1.7.7.jar (or later)

• slf4j-log4j12-1.7.7.jar (or later)

• log4j-1.2.15.jar (or later)

You can also use WbExport together with the -stylesheet parameter and the suppplied stylesheets
wbexport2dbunit.xslt and wbexport2dbunitflat.xslt to generate DbUnit XML files from data
already present in the database (in that case no DbUnit libraries are needed).

http://www.dbunit.org/
http://www.sql-workbench.net/xslt.html

SQL Workbench/J User's Manual

58

As with the Save Data as command, the options SQL UPDATE and SQL DELETE/INSERT are only available
when the current result set is updateable. If no key columns could be retrieved for the current result, you can manually
define the key columns to be used, using Data » Define key columns

If you do not want to copy all columns to the clipboard, hold down the the CTRL key while selecting one
of the menu items related to the clipboard. A dialog will then let you select the columns that you want to
copy.

Alternatively you can hold down the Alt key while selecting rows/columns in the result set. This will allow you to
select only the columns and rows that you want to copy. If you then use one of the formats available in the Copy
selected submenu, only the selected cells will be copied. If you choose to copy the data as UPDATE or DELETE/
INSERT statements, the generated SQL statements will not be correct if you did not select the primary key of the
underlying update table.

12.18. Import data into the result set

12.18.1. Import a file into the current result set

SQL Workbench/J can import tab separated text files into the current result set. This means, that you need to issue the
appropriate SELECT statement first. The structure of the file has to match the structure of the result set, otherwise an
error will occur. To initiate the import select Data » Import file

When selecting the file, you can change some parameters for the import:

Option Description

Header if this option this is checked, the first line of the import file will be ignored

Delimiter the delimiter used to separate column values. Enter \t for the tab character

Date Format The format in which date fields are specified.

Decimal char The character that is used to indicate the decimals in numeric values (typically a
dot or a comma)

Quote char The character used to quote values with special characters. Make sure that each
opening quote is followed by a closing quote in your text file.

You can also import text and XML files using the WbImport command. Using the WbImport command is the
recommended way to import data, as it is much more flexible, and - more important - it does not read the data into
memory.

12.18.2. Import the clipboard into the current result

You can import the contents of the clipboard into the current result, if the format matches the result set. When you
select Data » Import from Clipboard SQL Workbench/J will check if the current clipboard contents can be imported
into the current result. The data can automatically be imported if the first row of the data contains the column names.
One of the following two conditions must be true in order for the import to succeed

• The columns are delimited with a tab character and the first row contains column names. All matching columns will
then be imported

• If no column name matches (i.e. no header row is present) but the number of columns (identified by the number of
tab characters in the first row) is identical to the number of columns in the current result.

If SQL Workbench/J cannot identify the format of the clipboard a dialog will be opened where you can specify the
format of the clipboard contents. This is mainly necessary if the delimiter is not the tab character. You can manually
open that dialog, by holding down the Ctrl key when clicking on the menu item.

SQL Workbench/J User's Manual

59

13. Using SQL Workbench/J specific annotations in SQL comments

By adding special comments to a SQL (select) statement, you can influence the way the result is displayed in SQL
Workbench/J. This comments are called "annotations" and must be included in a comment preceding the statement that
is executed. The comment can be a single line or multi-line SQL comment

13.1. Naming result tabs

You can change the name of the result tab associated with a statement. To give a result set a name, use the annotation
@WbResult followed by the name that should appear as the result's name.

The following examples executes two statements. The result for the first will be labelled "List of contacts" and the
second will be labelled "List of companies":

-- @WbResult List of contacts
SELECT * FROM person;

/*
 @WbResult List of companies
 this will retrieve all companies from the database
*/
SELECT * FROM company;

The result name that is used, will be everything after the annotation's keyword until the end of the line.

For the second select (with the multi-line comment), the name of the result tab will be List of companies, the
comment on the second line will not be considered.

13.2. Adding macros to the result's context menu

The annotation @WbMacro can be used to add macros to the context menu of the result.

When such a macro is executed, the values of all columns of the currently selected row will be defined as variables that
are usable in the macro. The result of the macro will always be appended to the current result regardless of the setting in
the macro definition.

Variables which are defined by invocation of a macro from this menu item will not be deleted after the
macro has been executed.

Assume the following macro with the name "Person Address":

select *
from address
where person_id = $[id];

and the following SQL query:

-- @WbMacro name="Person Address"
select id, firstname, lastname
from person;

SQL Workbench/J User's Manual

60

The context menu of the result will then contain a new submenu: Macros » Person Address. The variables $[id],
$[firstname] and $[lastname] will contain the values of the currently selected row when the macro is
executed.

It is also possible to re-map the column names to different variable names.

-- @WbMacro name="Person Address" map="id:PersonID"
select id, firstname, lastname
from person;

In this case a variable named PersonID will be created with the value of the id column from the selected row.

The map parameter can be repeated several times to re-map multiple columns, e.g. map=p_id:PersonID
map=o_id:OrderID

It is possible to specify more than one macro for the context menu:

-- @WbMacro name="Person Address" map="id:PersonID"
-- @WbMacro name="Customer Orders" map="id:PersonOrderID"
select id, firstname, lastname
from person;

A macro can only be executed from the menu when exactly one row is selected in the result.

You can assign a title to the result by using the @WbResult annotation based on a variable in the macro:

-- @WbResult Addresses for $[firstname] $[lastname]
select *
from address
where person_id = $[PersonID];

13.3. Re-using an existing named result tab

If the result of a query should be displayed in an existing result tab, the annotation @WbUseTab together with a tab
name can be used. If this annotation is present and a result tab with that name already exists, the existing result will be
replaced with the new result. If no result tab with that name exists, a new tab (with the supplied name) will be created.

Re-using a result tab only works if SQL » Append new results is enabled. You can combine @WbUseTab
with the @WbAppendResult annotation to force re-using an existing result even though the option is
turned off.

If the following query is run for the second time, the existing data will be replaced with the newly retrieved data:

-- @WbUseTab List of contacts
SELECT * FROM person;

13.4. Scrolling the result

The annotation @WbScrollTo can be used to automatically scroll a result set after it has been retrieved to a specific
row number. The row number has to be supplied using a # sign:

-- @WbScrollTo #100

SQL Workbench/J User's Manual

61

SELECT *
FROM person;

In addition to a row number, the special values end or last (without a #) are also recognized. When they are
supplied, the result is automatically scrolled to the last row. This is useful when displaying the contents of log tables.

-- @WbScrollTo end
SELECT *
FROM activity_log;

13.5. Appending a results

The annotation @WbAppendResult can be used to always append the result of the associated query regardless of the
current setting of SQL » Append new results.

13.6. Suppressing empty results

To suppress an empty result, the annotation @WbRemoveEmpty can be used. If a query returns no rows and contains
this annotation, no result tab will be created. No warning or message will be shown if this happens!

13.7. Automatic refresh of the result

To automatically refresh a result in a defined interval, the @WbRefresh annotation can be used. The interval is
specified as a parameter to the annotation:

-- @WbRefresh 15s
SELECT *
FROM pg_stat_activity;

The automatic refresh can also be enabled through the context menu of the result tab.

SQL Workbench/J User's Manual

62

14. Using macros and text clips
SQL macros and text clips can help writing and executing SQL statements that you use frequently.

There are two types of macros:

• executable macros

• expandable macros

Executable macros are intended for complete SQL statements that are executed once you select the macro. They can
also be used as an abbreviated SQL statement, by typing the macro's name and executing this as a SQL statement.

Expandable macros are intended for SQL fragments (or "clips"). The text of the macro is inserted into the editor if the
name is typed or the macro is selected from the menu.

14.1. Loading and saving macro sets

By default SQL Workbench/J will use a file with the name WbMacros.xml stored in the configuration directory to
save and load the macros.

To create a copy of the currently loaded macros, use Macros » Save Macros as.... To load previously saved macros, use
Macros » Load Macros....

The currently loaded file is displayed as a tool tip of the Save Macros as... menu item and and the bottom of the Manage
Macros dialog.

A set of macros is always loaded globally, not just for the current window. If you have more than one
window open, the newly loaded macros will also be active in all the other windows.

14.2. Defining Macros

There are three ways to define a SQL macro.

If the current statement in the editor should be defined as a macro, select (highlight) the statement's text and select
Macros » Add SQL macro from the main menu. You will be prompted to supply a name for the new macro. If you
supply the name of an existing macro, the existing macro will be overwritten.

Alternatively you can add a new macro through Macros » Manage Macros.... This dialog can also be used to delete and
and edit existing macros. You can put macros into separate groups (e.g. one for PostgreSQL macros, one for Oracle
etc). If you have only one group defined (or only one visible group), all macros of that group will be listed in the menu
directly. If you define more than one group, each group will appear as a separate sub-menu.

Macros can also be defined using the command WbDefineMacro.

When the dialog is closed using the OK button the macros are automatically saved to the current file.

The order in which the macros (or groups) appear in the menu can be changed by dragging them to the desired position
in the manage macro dialog.

14.3. Executable macros

There are two ways to run an executable macro: use it's name as a SQL command by typing it into the editor and
executing it like any other SQL statement. Or by selecting the corresponding menu entry from the Macros menu.

SQL Workbench/J User's Manual

63

Note that the macro name needs to be unique to be used as a "SQL Statement". If you have two different macros in two
different macro groups with the same name, it is undefined (i.e. "random") which of them will be executed.

To view the complete list of macros select Macros » Manage Macros... After selecting a macro, it can be executed
by clicking on the Run Run button. If you check the option "Replace current SQL", then the text in the editor will be
replaced with the text from the macro when you click on the run button.

In console mode you can use the command WbListMacros to show the complete list of macros (of course this can
also be used in GUI mode as well.

Macros will not be evaluated when running in batch mode.

Apart from the SQL Workbench/J script variables for SQL Statements, additional "parameters" can be used inside a
macro definition. These parameters will be replaced before replacing the script variables.

Parameter Description

${selection}$ This parameter will be replaced with the currently selected text. The selected text will not
be altered in any way.

${selected_statement}$ This behaves similar to ${selection}$ except that any trailing semicolon will be
removed from the selection. Thus the macro definition can always contain the semicolon
(e.g. when the macro actually defines a script with multiple statements) but when selecting
the text, you do not need to worry whether a semicolon is selected or not (and would
potentially break the script).

${current_statement}$ This key will be replaced with the current statement (without the trailing delimiter). The
current statement is defined by the cursor location and is the statement that would be
executed when using SQL » Execute current [46]

${text}$ This key will be replaced with the complete text from the editor (regardless of any
selection).

The SQL statement that is eventually executed will be logged into the message panel when invoking the macro from the
menu. Macros that use the above parameters cannot correctly be executed by entering the macro alias in the SQL editor
(and then executing the "statement").

The parameter keywords are case sensitive, i.e. the text ${SELECTION}$ will not be replaced!

This feature can be used to create SQL scripts that work only with with an additional statement. e.g. for Oracle you
could define a macro to run an explain plan for the current statement:

explain plan
for
${current_statement}$
;

-- @wbResult Execution plan
select plan_table_output
from table(dbms_xplan.display(format => 'ALL'));

When you run this macro, it will run an EXPLAIN PLAN for the statement in which the cursor is currently located,
and will immediately display the results for the explain. Note that the ${current_statement}$ keyword is
terminated with a semicolon, as the replacement for ${current_statement}$ will never add the semicolon. If
you use ${selection}$ instead, you have to pay attention to not select the semicolon in the editor before running
this macro.

SQL Workbench/J User's Manual

64

For PostgreSQL you can define a similar macro that will automatically run the EXPLAIN command for a statemet:

explain (analyze true, verbose true, buffers true) ${current_statement}$;

Another usage of the parameter replacement could be a SQL Statement that retrieves the rowcount that would be
returned by the current statement:

SELECT count(*) FROM
(
${current_statement}$
)

14.4. Expandable macros

Expandable macros are not intended to be run directly. They serve as code templates for writing statements.

When typing the name of the macro in the editor and completing this name with the "Macro expansion key", the typed
word will be replaced with the macro's text. The name of a such a macro is not case sensitive. So slt and SLT are
detected as the same macro name.

The macro expansion is only triggered if the macro expansion key is typed quickly after the word. If there is a longer
pause between typing the last character of the macro's name and typing the expansion key, the macro will not be
expanded.

For expandable macros, two special place holders in the macro text are supported. Both place holders are deleting when
the macro text is inserted.

Parameter Description

${c} This parameter marks the location of the cursor after the macro is expanded.

${s} This parameter also marks the position of the cursor after expansion. Additionally the word
on the right hand side of the parameter will automatically be selected.

SQL Workbench/J User's Manual

65

15. Working with foreign keys

15.1. Navigating referenced rows

Once you have retrieved data from a table that has foreign key relations to other tables, you can navigate the
relationship for specific rows in the result set. Select the rows for which you want to find the data in the related tables,
then right click inside the result set. In the context menu two items are available:

Referenced rows
Referencing rows

Consider the following tables:

BASE(b_id, name)
DETAIL(d_id, base_id, description) with base_id referencing BASE(b_id)
MORE_DETAIL(md_id, detail_id, description) with detail_id referencing DETAIL(d_id)

The context menu for the selected rows will give you the choice in which SQL tab you want the generated SELECT to
be pasted. This is similar to the Put SELECT into feature in the table list of the DbExplorer.

Once you have obtained a result set from the table BASE, select (mark) the rows for which you want to retrieve the
related rows, e.g. the one where id=1. Using Referencing rows » DETAIL SQL Workbench/J will create the following
statement:

SELECT *
FROM DETAIL
WHERE base_id = 1;

The result of the generated statement will always be added to the existing results of the chosen SQL panel. By default
the generated SQL statement will be appended to the text editor. If you don't want the generated statement to be
appended to the editor, hold down the Ctrl key while selecting the desired menu item. In that case, the generated
statement will only be written to the messages panel of the SQL tab. If the target tab contains an external file, the
statement will never be appended to the editor's text.

To navigate from the child data to the "parent" data, use Referenced rows

The additional result tabs can be closed using Data » Close result

15.2. Generating JOIN conditions

When using ANSI JOIN syntax to create table joins with tables linked by foreign keys in the database, the command
JOIN completion can be used to automatically generate the necessary join condition. Consider the following
statement

SELECT ord.amount, ord.order_date, prod.name
FROM orders ord
 JOIN product prod ON |

(the | denoting the location of the cursor).

When the cursor is located behind the ON keyword and you select SQL » JOIN completion, SQL Workbench/J will
retrieve the foreign key and corresponding primary key definitions between the tables orders and product. If
such constraints exist, the corresponding condition will be generated and written into the editor. After executing JOIN
completion, the SQL statement will look like this:

SQL Workbench/J User's Manual

66

SELECT ord.amount, ord.order_date, prod.name
FROM orders ord
 JOIN product prod ON prod.id = ord.product_id

This feature requires the usage of the JOIN keyword. Joining tables in the WHERE clause is not supported.

By default SQL Workbench/J tries to create a join condition on the table from the "previous" JOIN condition (or the
FROM) clause. If no foreign key constraint is found linking the "current" and the "previous" table, a popup window with
all tables in the select statement that could be used for completion is displayed. This popup merely looks at the tables in
the statement, no test for foreign key constraints is done when displaying this list.

You can configure this feature to generate a USING operator if the column names match. The case of the keywords in
the generated condition is determined by the settings of the SQL Formatter.

15.3. Selecting foreign key values in referencing tables

SQL Workbench/J supports the selection of foreign key values (i.e. the primary key values of the referenced table) in
two different situations: while editing a result set and while writing a DML statement.

15.3.1. Editing foreign key values

After starting to edit a cell, the context menu contains an item Select FK value. Once this item is selected SQL
Workbench/J will detect the table that the current column references. If a foreign key is detected a dialog window
will be shown containing the data from the referenced table. For performance reasons the check if the current column
is referencing another table is only done after the menu item has been invoked. If no foreign key could be found, a
message is displayed in the status bar.

This is only supported for result sets that are based on a single table.

By default the dialog will not load more than 150 rows from that table. The number of retrieved rows can be configured
through the "Max. Rows" input field.

There are two ways to find the desired target row which can be selected using the radio buttons above the input field.

• Applying a filter

This mode is intended for small lookup tables. All rows are loaded into memory and the rows are filtered
immediately when typing. The typed value is searched in all columns of the result set. Clicking on the reload button
will always re-retrieve all rows.

• Retrieving data

This mode is intended for large tables where not all rows can be loaded into memory. After entering a search term
and hitting the ENTER key (or clicking on the reload button), a SQL statement to retrieve the rows containing the
search statement will be executed. The returned rows are then displayed.

Once you have selected the desired row, clicking the OK will put the value(s) of the corresponding primary key
column(s) into the currently edited row.

15.3.2. Selecting FK values when editing DML statements

When invoking code-completion inside a DML (UPDATE, DELETE, INSERT, SELECT) statement, an additional
entry (Select FK value) is available in the popup if the cursor is located inside the value assignment or
condition, e.g. in the following example:

SQL Workbench/J User's Manual

67

update film_category
 set category_id = |
 where film_id = 42;

(the | denoting the location of the cursor).

When that menu item is selected, the statement is analyzed and if the column of the current expression is a foreign key
to a different table, the lookup dialog will appear and will let you select the appropriate PK value from the referenced
table.

Foreign key lookup for DML statement is currently only supported for single column primary keys.

15.4. Deleting rows with foreign keys

To delete rows from the result set including all dependent rows, choose Data » Delete With Dependencies. In this case
SQL Workbench/J will analyze all foreign keys referencing the update table, and will generate the necessary DELETE
statements to delete the dependent rows, before sending the DELETE for the selected row(s).

Delete With Dependencies might take some time to detect all foreign key dependencies for the current update table.
During this time a message will be displayed in the status bar. The selected row(s) will not be removed from the result
set until the dependency check has finished.

Note that the generated SQL statements to delete the dependent rows will only be shown if you have
enabled the preview of generated DML statements in the options dialog

You can also generate a script to delete the selected and all depending rows through Data » Generate delete script. This
will not remove any rows from the current result set, but instead create and display a script that you can run at a later
time.

If you want to generate a SQL script to delete all dependent rows, you can also use the SQL Workbench/J command
WbGenerateDelete.

SQL Workbench/J User's Manual

68

16. DBMS specific features

16.1. PostgreSQL specific features

16.1.1. Checking for un-committed changes

Before a SQL panel (or the application) is closed, SQL Workbench/J will check if the current connection has any un-
committed changes (e.g. an INSERT without a COMMIT). This is done by checking the pg_locks system view. The
information in this view might not always be 100% correct and can report open transactions even though there are none.

The checking for un-committed changes can be controlled through the connection profile.

16.1.2. Using the COPY API for client side files

WbImport can make use of PostgreSQL's COPY API to send client side files to the server. The SQL statement COPY
from stdin does not work when executed using the JDBC driver. But WbImport can make use of the COPY API
by using the parameter -usePgCopy

16.1.3. Using .pgpass

If username, password or both are empty in a connection profile, SQL Workbench/J will try to use the information
stored in the password file file or the environment variables (PGPASS, PGUSER) the same way as libpq uses them.

16.1.4. Using savepoints for single statements

PostgreSQL marks a complete transaction as failed if a only single statement fails. In such a case the transaction cannot
be committed, e.g. consider the following script:

INSERT INTO person (id, firstname, lastname) VALUES (1, 'Arthur', 'Dent');
INSERT INTO person (id, firstname, lastname) VALUES (2, 'Zaphod', 'Beeblebrox');
INSERT INTO person (id, firstname, lastname) VALUES (2, 'Ford', 'Prefect');
COMMIT;

As the ID column is the primary key, the third insert will fail with a unique key violation. In PostgreSQL you cannot
commit anyway and thus persist the first two INSERTs.

This problem can only be solved by using a SAVEPOINT before and after each statement. In case that statement fails,
the transaction can be rolled back to the state before the statement and the reminder of the script can execute.

Doing this manually is quite tedious, so you can tell SQL Workbench/J to do this automatically for you by setting the
properties:

workbench.db.postgresql.ddl.usesavepoint=true
workbench.db.postgresql.sql.usesavepoint=true

in the file workbench.settings. If this is enabled, SQL Workbench/J will issue a SET SAVEPOINT before running each
statement and will release the savepoint after the statement. If the statement failed, a rollback to the savepoint will be
issued that will mark the transaction as "clean" again. So in the above example (with sql.usesavepoint set to
true), the last statement would be rolled back automatically but the first two INSERTs can be committed (this will
also required to turn on the "Ignore errors" option is enabled).

If you want to use the modes update/insert or insert/update for WbImport, you should also add the
property:

http://www.postgresql.org/docs/current/static/view-pg-locks.html
http://www.postgresql.org/docs/current/static/libpq-pgpass.html
http://www.postgresql.org/docs/current/static/libpq-envars.html

SQL Workbench/J User's Manual

69

workbench.db.postgresql.import.usesavepoint=true

to enable the usage of savepoints during imports. This setting also affects the WbCopy command.

This is not necessary when the using the mode upsert or insertIgnore with Postgres 9.5

You can also use the parameter -useSavepoint for the WbImport and WbCopy commands to control the use of
savepoints for each import.

Using savepoints can slow down the import substantially.

16.1.5. Preventing connections with "idle in transaction" state

Postgres has a very strict transaction concept which means that even a simple SELECT statement starts a transaction.
This has some implications on concurrency, the most obvious one is that tables that are "used" in a transaction (because
a query has retrieved some values) cannot be modified using DDL statements (ALTER TABLE). Connections to the
server that do this have the status idle in transaction as opposed to just "idle".

There are two ways to prevent this:

• Working with auto-commit enabled, so that each query is automatically committed. This is how pgAdmin and psql
work by default

• If you don't want to work with auto-commit enabled, these transactions need to be ended properly by running a
rollback or commit when the query is finished

SQL Workbench/J can be configured to do the second approach automatically, by setting the configuration property
workbench.db.postgresql.transaction.readonly.end to one of the following values:

• never

• rollback

• commit

The feature is disabled if the value never is configured. The other two values control how the transaction is ended:
either by running a rollback or a commit

The statement to end the transaction will only be sent to the server, if the current transaction has not modified anything
in the database. Once a real change has been done by running an DML or DDL statement, nothing will be sent
automatically.

16.2. Oracle specific features

16.2.1. Checking for un-committed changes

Before a SQL panel (or the application) is closed, SQL Workbench/J will check if the current connection has any un-
committed changes (e.g. an INSERT without a COMMIT). This is done by checking the V$TRANSACTION system
view.

By default a regular user does not have SELECT privilege on V$TRANSACTION, please grant the
privilege before enabling this feature.

http://docs.oracle.com/cd/E11882_01/server.112/e25513/dynviews_3114.htm

SQL Workbench/J User's Manual

70

The checking for un-committed changes can be controlled through the connection profile.

16.2.2. SQL*Plus autotrace mode

SQL Workbench/J supports the a mode similar to "autotrace" mode in SQL*Plus. The command to turn on autotrace is
the same as in SQL*Plus and supports the same options. For details see the description of the SET command.

The current user needs to have the PLUSTRACE role in order to be able to see statement statistics (which is required
by SQL*Plus as well). The PLUSTRACE role grants the SELECT privilege on the system views: V$SESSTAT, V
$STATNAME and V$MYSTAT. The role is not required for the traceonly explain option.

As an extension to the Oracle syntax, SQL Workbench/J supports the keyword realplan as a substitute for
explain. In that case the execution plan is also displayed but not by using EXPLAIN PLAN but by retrieving the
actual execution plan that is available via dbms_xplan.display_cursor(). In order to use that package, the
execute SQL will be changed by SQL Workbench/J. It will prepend it with a unique identifier so that the SQL can be
found again in Oracle's system views and it will add the gather_plan_statistics hint to the statement in order
to get more detailed statistics in the execution plan.

In order to see the "real" execution plan, use set autotrace traceonly realplan instead of set
autotrace traceonly explain.

When using statistics together with explain or realplan, SQL Workbench/J will have to retrieve the
generated SQL_ID in order to get the execution plan using dbms_xplan.display_cursor(). To use that
function the SQL_ID is required which is retrieved from V$SQL using a unique comment that is added to the SQL
statement before it is sent to the database. Querying V$SQL based on the column SQL_TEXT is quite an expensive
operation and might create unwanted latch contention on the server. If you want to avoid that overhead do not use the
statistics option when also displaying the execution plan.

Examples

Show statistics without retrieving the actual data:

set autotrace traceonly statistics

Retrieve the data and show statistics

set autotrace on statistics

Display the statistics and the execution plan but do not retrieve the data

set autotrace traceonly explain statistics

Display the statistics and the actual execution plan but do not retrieve the data

set autotrace traceonly realplan statistics

16.2.3. Using SQL*Plus' SHOW command

SQL Workbench/J supports most of the parameters and options the SHOW from SQL*Plus does.

SHOW option Description

ERRORS Displays errors from the last PL/SQL compilation.

PARAMETERS Displays configuration parameters. Unlike SQL*Plus you
can supply multiple parameters separated with a comma:
show parameter memory,sga will show the values
for all parameters that contain the string memory or sga.

http://docs.oracle.com/cd/E11882_01/server.112/e16604/ch_twelve040.htm#i2698680
http://docs.oracle.com/cd/E11882_01/server.112/e16604/ch_eight.htm#i1037226

SQL Workbench/J User's Manual

71

SHOW option Description

As with SQL*Plus, you need the SELECT privilege on V_
$PARAMETER to use the PARAMETERS option.

SGA Displays memory information.

As with SQL*Plus, you need SELECT privilege on V_
$SGA to use the sga (or sgainfo option.

SGAINFO Displays extended memory information not available in
SQL*Plus.

RECYCLEBIN Shows the content of the recyclebin.

USER Shows the current user.

AUTOCOMMIT Shows the state of the autocommit property.

LOGSOURCE Displays the location of the archive logs.

EDITION Shows the edition of the current database.

CON_ID Displays the id of the current container database (only for
12c)

PDBS Displays the list of pluggable databases (only for 12c)

16.2.4. Using Oracle's DBMS_OUTPUT package

To turn on support for Oracle's DBMS_OUTPUT package you have to use the (SQL Workbench/J specific) command
ENABLEOUT. As an alternative you can also use the SQL*Plus command set serveroutput on.

After running ENABLEOUT the DBMS_OUTPUT package is enabled, and any message written with
dbms_output.put_line() is displayed in the message panel after executing a SQL statement. It is equivalent to
calling the dbms_output.enable() procedure.

You can control the buffer size of the DBMS_OUTPUT package by passing the desired buffer size as a parameter to the
ENABLEOUT command: ENABLEOUT 32000;

Due to a bug in Oracle's JDBC driver, you cannot retrieve columns with the LONG or LONG RAW data
type if the DBMS_OUTPUT package is enabled. In order to be able to display these columns, support for
DBMS_OUTPUT has to be switched off.

To disable the DBMS_OUTPUT package again, use the (SQL Workbench/J specific) command DISABLEOUT. This is
equivalent to calling dbms_output.disable() procedure or using set serveroutput off

ENABLEOUT and DISABLEOUT support an additional parameter quiet to suppress the feedback message that
the support for DBMS_OUTPUT has been enabled or disabled. set serveroutput off never gives a feedback
message.

16.2.5. Using DBMS_METADATA for source retrieval

SQL Workbench/J uses the information returned by the JDBC driver to re-create the source of database objects (tables,
views, ...). The source generated this way will not always match the source generated by the Oracle.

The use of DBMS_METADATA for object source retrieval is controlled by configuration properties.

The property workbench.db.oracle.use.dbmsmeta can be used to controll the use for all object types. When
set to true the source for all objects will be retrieved using DBMS_METADATA.

The use of DBMS_METADATA can also be controlled for a specific object type by appending the type name to the
property name workbench.db.oracle.use.dbmsmeta. The following types can be configured:

http://docs.oracle.com/cd/E11882_01/appdev.112/e40758/d_metada.htm

SQL Workbench/J User's Manual

72

• workbench.db.oracle.use.dbmsmeta.table

• workbench.db.oracle.use.dbmsmeta.mview (for MATERIALIZED VIEWs)

• workbench.db.oracle.use.dbmsmeta.index

• workbench.db.oracle.use.dbmsmeta.view

• workbench.db.oracle.use.dbmsmeta.sequence

• workbench.db.oracle.use.dbmsmeta.synonynm

• workbench.db.oracle.use.dbmsmeta.procedure (includes packages)

• workbench.db.oracle.use.dbmsmeta.trigger

• workbench.db.oracle.use.dbmsmeta.constraint (for FK and PK constraints)

The value of a specific object type overrides the global setting.

SQL Workbench/J User's Manual

73

17. Variable substitution in SQL statements

17.1. Defining variables

You can define variables within SQL Workbench/J that can be referenced in your SQL statements. This is done through
the internal command WbVarDef.

WbVarDef myvar=42 defines a variable with the name myvar and the value 42. If the variable does not exist, it
will be created. If it exists its value will be overwriliteralen with the new value. To remove a variable simply set its
value to nothing: WbVarDef myvar=. Alternatevily you can use the command WbVarDelete myvar to remove a
variable definition.

Variable substitution is also done within Macros. If your macro definition contains a reference to a SQL Workbench/J
variable, this will be treated the same way as in regular statements.

The definition of variables can also be read from a properties file. This can be done by specifying -file=filename
for the WbVarDef command, or by passing the -vardef parameter when starting SQL Workbench/J. Please see the
description for the command line parameters for details.

WbVarDef -file=/temp/myvars.def

This file has to be a standard Java "properties" file. Each variable is listed on a single line in the format
variable=value. Lines starting with a # character are ignored (comments). Assuming the file myvars.def had
the following content:

#Define the ID that we need later
var_id=42
person_name=Dent
another_variable=24

After executing WbVarDef -file=/temp/myvars.def there would be three variables available in the system:
var_id, person_name, another_variable, that could be used e.g. in a SELECT query:

SELECT * FROM person where name='$[person_name]' or id=$[var_id];

SQL Workbench/J would expand the variables and send the following statement to the server:

SELECT * FROM person where name='Dent' or id=42;

17.2. Populate a variable from a SELECT statement

A variable can also be defined as the result of a SELECT statement. This indicated by using @ as the first character
after the equal sign. The SELECT needs to be enclosed in double quotes, if you are using single quotes e.g. in the where
clause:

WbVarDef myvar=@"SELECT id FROM person WHERE name='Dent'"

If the SELECT returns more than one column, multiple variables can be defined by specifying a comma separated list of
variable names. The following statement will define the variables id and name based on the values returned from the
SELECT statement:

WbVarDef id,name=@"SELECT id,firstname FROM person WHERE lastname='Dent'"

When executing the statement, SQL Workbench/J only retrieves the first row of the result set. Subsequent rows are
ignored. If the select returns more columns than variable names, the additional values are ignored. If more variables are
listed than columns are present in the result set, the additional variables will be undefined.

SQL Workbench/J User's Manual

74

17.3. Populate a variable from a file

A variable can also be defined by reading the content of a file (this is different from reading the variable definition from
a file).

WbVarDef -variable=somevar -contentFile=/temp/mydata.txt

When executing the statement, SQL Workbench/J will read the content of the file mydata.txt and use that as the
value for the variable somevar.

If the file contents contains references to variables, these are replaced after the content as been loaded. To disable
replacement, use the parameter -replaceVars=false.

Consider the following sequence of statements, where the file select.txt contains the statement SELECT * FROM
person WHERE id = $[person_id]

WbVarDef person_id=42;
WbVarDef -variable=my_select -contentFile=select.txt;
$[my_select];

After running the above script, the variable my_select, will have the value of SELECT * FROM person WHERE
id = 42. When "running" $[my_select], the row with id=42 will be retrieved.

17.4. Editing variables

To view a list of currently defined variables execute the command WbVarList. This will display a list of currently
defined variables and their values. You can edit the resulting list similar to editing the result of a SELECT statement.
You can add new variables by adding a row to the result, remove existing variables by deleting rows from the result, or
edit the value of a variable. If you change the name of a variable, this is the same as removing the old, and creating a
new one.

17.5. Using variables in SQL statements

The defined variables can be used by enclosing them in special characters inside the SQL statement. The default is set
to $[and], you can use a variable this way:

SELECT firstname, lastname FROM person WHERE id=$[id_variable];

If you have a variable with the name id_variable defined, the sequence $[id_variable] will be replaced with
the current value of the variable.

Variables will be replaced after replacing macro parameters.

If the SQL statement requires quotes for the SQL literal, you can either put the quotes into the value of the variable
(e.g. WbVarDef name="'Arthur'") or you put the quotes around the variable's placeholder, e.g.: WHERE
name='$[name]';

Variables will be replaced inside string literals (e.g. '$[foo]') and comments (e.g. -- $[foo] or /*
$[foo] */)

If you are using values in your regular statements that actually need the prefix ($[or suffix]) characters, please make
sure that you have no variables defined. Otherwise you will unpredictable results. If you want to use variables but
need to use the default prefix for marking variables in your statements, you can configure a different prefix and suffix
for flagging variables. To change the the prefix e.g. to %# and the suffix (i.e end of the variable name) to #, add the
following lines to your workbench.settings file:

SQL Workbench/J User's Manual

75

workbench.sql.parameter.prefix=%#
workbench.sql.parameter.suffix=#

You may leave the suffix empty, but the prefix definition may not be empty.

17.6. Prompting for values during execution

You can also use variables in a way that SQL Workbench/J will prompt you during execution of a SQL statement that
contains a variable.

If you want to be prompted for a value, simply reference the value with a quotation mark in front of its name:

SELECT id FROM person WHERE name like '$[?search_name]%'

If you execute this statement, SQL Workbench/J will prompt you for the value of the variable search_name. If the
variable is already defined you will see the current value of the variable. If the variable is not yet defined it will be
implicitly defined with an empty value.

If you use a variable more then once in your statement it is sufficient to define it once as a prompt variable. Prompting
for a variable value is especially useful inside a macro definition.

You can also define a conditional prompt with using an ampersand instead of a quotation mark. In this case you will
only be prompted if no value is assigned for the variable:

SELECT id FROM person WHERE name like '$[&search_name]%'

The first time you execute this statement (and no value has been assigned to search_name before using WBVARDEF
or on the command line) you will be prompted for a value for search_name. Any subsequent execution of the
statement (or any other statement referencing $[&search_name]) will re-use the value you entered.

When defining a variable, you can specify a list of values that should be entered in the dialog.

WbVardef -variable=status -values='active,pending,closed';

17.7. Controlling the order of variables during prompting

By default the variables shown in the prompt dialog are sorted alphabetically. This behavior can be changed by setting
the configuration property workbench.sql.parameter.prompt.sort to true, e.g. using WbSetConfig

WbSetConfig workbench.sql.parameter.prompt.sort=false

If the property is set to false, the variables are shown in the order they were declared:

WbVarDef zzz='';
WbVarDef vvv='';
WbVarDef aaa='';

select *
from foobar
where col1 = $[?aaa]
 and col2 = $[?vvv]
 and col3 > $[?zzz]

The dialog to enter the variables will show them in the order zzz, vvv, aaa

SQL Workbench/J User's Manual

76

18. Using SQL Workbench/J in batch files
SQL Workbench/J can also be used from batch files to execute SQL scripts. This can be used to e.g. automatically
extract data from a database or run other SQL queries or statements.

To start SQL Workbench/J in batch mode, either the -script or -command must be passed as an argument on the
command line.

If neither of these parameters is present, SQL Workbench/J will run in GUI mode.
When running SQL Workbench/J on Windows, you either need to use sqlwbconsole or start SQL
Workbench/J using the java command. You can not use the Windows launcher SQLWorkbench.exe
(or SQLWorkbench64.exe), as it will run in the background without a console window, and thus you
will not see any output from the batch run.

Please refer to Starting SQL Workbench/J for details on how to start SQL Workbench/J with the java command.

When you need to quote parameters inside batch or shell scripts, you have to use single quotes ('test-
script.sql') to quote these values. Most command line shells (including Windows®) do not pass double quotes to
the application and thus the parameters would not be evaluated correctly by SQL Workbench/J

If you want to start the application from within another program (e.g. an Ant script or your own program), you will
need to start SQL Workbench/J's main class directly.

java -cp sqlworkbench.jar workbench.WbStarter

Inside an Ant build script this would need to be done like this:

<java classname="workbench.WbStarter" classpath="sqlworkbench.jar" fork="true">
 <arg value="-profile='my profile'"/>
 <arg value="-script=load_data.sql"/>
</java>

The parameters to specify the connection and the SQL script to be executed have to be passed on the command line.

18.1. Specifying the connection

When running SQL Workbench/J in batch mode, you can define the connection using a profile name or specifying the
connection properties directly .

18.2. Specifying the script file(s)

The script that should be run is specified with the parameter -script=<filename> Multiple scripts can be
specified by separating them with a comma. The scripts will then be executed in the order in which they appear in the
commandline. If the filenames contain spaces or dashes (i.e. test-1.sql) the names have to be quoted.

You can also execute several scripts by using the WbInclude command inside a script.

18.3. Specifying a SQL command directly

If you do not want to create an extra SQL script just to run one or more short SQL commands, you can specify the
commands to be executed directly with the -command parameter. To specifiy more than on SQL statement use the
standard delimiter to delimit them, e.g. -command='delete from person; commit;'

If a script has been specified using the -script parameter, the -command parameter is ignored.

http://ant.apache.org

SQL Workbench/J User's Manual

77

When using Linux (or Unix-Based operating systems) the command can also be passed using a "Here Document". In
this case the -command parameter has be be used without a value:

$ java -jar sqlworkbench.jar -profile=PostgresProduction -command <<SQLCMD
insert into some_table values (42);
delete from other_table where id = 42;
commit;
SQLCMD

The position of the -command parameter does not matter. The following will also work:

$ java -jar sqlworkbench.jar \
 -profile=PostgresProduction \
 -command \
 -displayResult=true \
 -showTiming=true <<SQLCMD
select *
from person;
SQLCMD

18.4. Specifying a delimiter

If your script files use a non-standard delimiter for the statements, you can specify an alternate delimiter through
the profile or through the -altDelimiter parameter. The alternate delimiter should be used if you have several
scripts that use the regular semicolon and the alternate delimiter. If your scripts exceed a certain size, they won't be
processed in memory and detecting the alternate delimiter does not work in that case. If this is the case you can use the
-delimiter switch to change the default delimiter for all scripts. The usage of the alternate delimiter will be disabled
if this parameter is specified.

18.5. Specifying an encoding for the file(s)

In case your script files are not using the default encoding, you can specify the encoding of your script files with the -
encoding parameter. Note that this will set for all script files passed on the command line. If you need to run several
script files with different encodings, you have to create one "master" file, which calls the individual files using the
WbInclude command together with its -encoding parameter.

18.6. Specifying a logfile

If you don't want to write the messages to the default logfile which is defined in workbench.settings an alternate
logfile can be specified with -logfile

18.7. Handling errors

To control the behavior when errors occur during script execution, you can use the parameter -
abortOnError=[true|false]. If any error occurs, and -abortOnError is true, script processing is
completely stopped (i.e. SQL Workbench/J will be stopped). The only script which will be executed after that point is
the script specified with the parameter -cleanupError.

If -abortOnError is false all statements in all scripts are executed regardless of any errors. As no error information
is evaluated the script specified in -cleanupSuccess will be executed at the end.

SQL Workbench/J User's Manual

78

If this parameter is not supplied it defaults to true, meaning that the script will be aborted when an error occurs.

You can also specify whether errors from DROP commands should be ignored. To enable this, pass the parameter -
ignoreDropErrors=true on the command line. This works when connecting through a profile or through a full
connection specification. If this parameter is set to true only a warning will be issued, but any error reported from the
DBMS when executing a DROP command will be ignored.

Note that this will not always have the desired effect. When using e.g. PostgreSQL with autocommit off, the current
transaction will be aborted by PostgreSQL until a COMMIT or ROLLBACK is issued. So even if the error during the
DROP is ignored, subsequent statements will fail nevertheless.

18.8. Specify a script to be executed on successful completion

The script specified with the parameter -cleanupSuccess=<filename> is executed as the last script if either no
error occurred or AbortOnError is set to false.

If you update data in the database, this script usually contains a COMMIT command to make all changes permanent.

If the filename is specified as a relative file, it is assumed to be in the current working directory.

18.9. Specify a script to be executed after an error

The script specified with the parameter -cleanupError=<filename> is executed as the last script if
AbortOnError is set to true and an error occurred during script execution.

The failure script usually contains a ROLLBACK command to undo any changes to the database in case an error
occured.

If the filename is specified as a relative file, it is assumed to be in the current working directory.

18.10. Ignoring errors from DROP statements

When connecting without a profile, you can use the switch -ignoreDropErrors=[true|false] to ignore errors
that are reported from DROP statements. This has the same effect as connecting with a profile where the Ignore DROP
errors property is enabled.

18.11. Changing the connection

You can change the current connection inside a script using the command WbConnect.

18.12. Controlling console output during batch execution

Any output generated by SQL Workbench/J during batch execution is sent to the standard output (stdout, System.out)
and can be redirected if desired.

18.12.1. Displaying result sets

If you are running SELECT statements in your script without "consuming" the data through an WbExport, you can
optionally display the results to the console using the parameter -displayResult=true. If this parameter is not
passed or set to false, results sets will not be visible. For a SELECT statement you will simply see the message

SQL Workbench/J User's Manual

79

SELECT executed successfully

18.12.2. Controlling execution feedback

When running statements, SQL Workbench/J reports success or failure of each statement. Inside a SQL script the
WbFeedback command can be used to control this feedback. If you don't want to add a WbFeedback command
to your scripts, you can control the feedback using the -feedback switch on the command line. Passing -
feedback=false has the same effect as putting a WbFeedback off in your script.

As displaying the feedback can be quite some overhead especially when executing thousands of statements in a script
file, it is recommended to turn off the result logging using WbFeedback off or -feedback=false

To only log a summary of the script execution (per script file), specify the parameter -
consolidateMessages=true. This will then display the number of statements executed, the number of failed
statements and the total number of rows affected (updated, deleted or inserted).

When using -feedback=false, informational messages like the total number of statements executed, or a
successful connection are not logged either.

18.12.3. Controlling statement progress information

Several commands (like WbExport) show progress information in the statusbar. When running in batch mode, this
information is usually not shown. When you specify -showProgress=true these messages will also be displayed
on the console.

18.13. Running batch scripts interactively

By default neither parameter prompts nor execution confirmations ("Confirm Updates") are processed when running in
batch mode. If you have batch scripts that contain parameter prompts and you want to enter values for the parameters
while running the batch file, you have to start SQL Workbench/J using the parameter -interactive=true.

18.14. Defining variables

The definition of variables can be read from a properties file, either by specifying -file=filename for the
WbVarDef command, or by passing the -varFile or -variable parameter when starting SQL Workbench/J.
Please see the description for the command line parameters for details.

18.15. Setting configuration properties

When running SQL Workbench/J in batch mode, with no workbench.settings file, you can set any property by
passing the property as a system property when starting the JVM. To change the loglevel to DEBUG you need to pass -
Dworkbench.log.level=DEBUG when starting the application:

java -Dworkbench.log.level=DEBUG -jar sqlworkbench.jar

18.16. Examples
For readability the examples in this section are displayed on several lines. If you enter them manually
on the command line you will need to put everything in one line, or use the escape character for your
operating system to extend a single command over more then one input line.

SQL Workbench/J User's Manual

80

Connect to the database without specifying a connection profile:

java -jar sqlworkbench.jar -url=jdbc:postgresql:/dbserver/mydb
 -driver=org.postgresql.Driver
 -username=zaphod
 -password=vogsphere
 -driverjar=C:/Programme/pgsql/pg73jdbc3.jar
 -script='test-script.sql'

This will start SQL Workbench/J, connect to the database server as specified in the connection parameters and execute
the script test-script.sql. As the script's filename contains a dash, it has to be quoted. This is also necessary
when the filename contains spaces.

Executing several scripts with a cleanup and failure script:

java -jar sqlworkbench.jar
 -script='c:/scripts/script-1.sql','c:/scripts/script-2.sql',c:/scripts/script3.sql
 -profile=PostgreSQL
 -abortOnError=false
 -cleanupSuccess=commit.sql
 -cleanupError=rollback.sql

Note that you need to quote each file individually (where it's needed) and not the value for the -script parameter

Run a SQL command in batch mode without using a script file

The following example exports the table "person" without using the -script parameter:

java -jar sqlworkbench.jar
 -profile='TestData'
 -command='WbExport -file=person.txt -type=text -sourceTable=person'

The following example shows how to run two different SQL statements without using the -script parameter:

java -jar sqlworkbench.jar
 -profile='TestData'
 -command='delete from person; commit;'

SQL Workbench/J User's Manual

81

19. Using SQL Workbench/J in console mode

SQL Workbench/J can also be used from the command line without starting the GUI, e.g. when you only have a console
window (Putty, SSH) to access the database. In that case you can either run scripts using the batch mode, or start SQL
Workbench/J in console mode, where you can run statements interactively, similar to the GUI mode (but of course with
less comfortable editing possibilities).

When using SQL Workbench/J in console mode, you cannot use the Windows launcher. Please use the supplied scripts
sqlwbconsole.cmd (Windows batch file) or sqlwbconsole.sh (Unix shell script) to start the console. On
Windows you can also use the sqlwbconsole.exe program to start the console mode.

When starting SQL Workbench/J in console mode, you can define the connection using a profile name or specifying the
connection properties directly . Additionally you can specify all parameters that can be used in batch mode.

The following batch mode parameters will be ignored in console mode:

script - you cannot specify a script to be run during startup. If you want to run a script in console mode, use the
command WbInclude.
encoding - as you cannot specify a script, the encoding parameter is ignored as well
displayResult - always true in console mode
cleanupSuccess and cleanupError- as no script is run, there is no "end of script" after which a "cleanup" is
necessary
abortOnError

19.1. Entering statements

After starting the console mode, SQL Workbench/J displays the prompt SQL> where you can enter SQL statements.
The statement will not be sent to the database until it is either terminated with the standard semicolon, or with the
alternate delimiter (that can be specified either in the used connection profile or on the commandline when starting the
console mode).

As long as a statement is not complete, the prompt will change to ..>. Once a delimiter is identified the statement(s)
are sent to the database.

SQL> SELECT * [enter]
..>FROM person;

A delimiter is only recognized at the end of the input line, thus you can enter more than one statement on a line (or
multiple lines) if the intermediate delimiter is not at the end of one of the input lines:

SQL> DELETE FROM person; rollback;
DELETE executed successfully
4 row(s) affected.

ROLLBACK executed successfully
SQL>

19.2. Exiting console mode

To exit the application in console mode, enter exit when the default prompt is displayed. If the "continuation
prompt" (..>) is displayed, this will not terminate the application. The keyword exit must not be terminated with a
semicolon.

SQL Workbench/J User's Manual

82

19.3. Setting or changing the connection

If you did not specify a connection on the command line when starting the console, you can set or change the current
connection in console mode using the WbConnect command. Using WbConnect in console mode will automatically
close the current connection, before establishing the new connection.

To disconnect the current connection in console mode, run the statement WbDisconnect. Note that this statement is
only available in console mode.

19.4. Displaying result sets

If you are running SELECT statements in console mode, the result is displayed on the screen in "tabular" format. Note
that SQL Workbench/J reads the whole result into memory in order to be to adjust the column widths to the displayed
data.

You can disable the buffering of the results using the command line parameter bufferResults=false. In
that case, the width of the displayed columns will not be adjusted properly. The column widths are taken from the
information returned by the driver which typically results is a much larger display than needed.

The output in tabular format (if results are buffered) looks like this:

SQL> select id, firstname, lastname, comment from person;
id | firstname | lastname | comment
---+-----------+------------+--------------------
1 | Arthur | Dent | this is a comment
2 | Zaphod | Beeblebrox |
4 | Mary | Moviestar | comment
3 | Tricia | McMillian | test1

(4 Rows)
SQL>

If the size of the column values exceed the console's width the display will be wrapped, which makes it hard to read. In
that case, you can switch the output so that each column is printed on a single line.

This is done by running the statement: WbDisplay record

SQL> WbDisplay record;
Display changed to single record format
Execution time: 0.0s
SQL> select id, firstname, lastname, comment from person;
---- [Row 1] -------------------------------
id : 1
firstname : Arthur
lastname : Dent
comment : this is a very long comment that would not fit onto the screen when printed as the last column
---- [Row 2] -------------------------------
id : 2
firstname : Zaphod
lastname : Beeblebrox
comment :
---- [Row 3] -------------------------------
id : 4
firstname : Mary
lastname : Moviestar

SQL Workbench/J User's Manual

83

comment :
---- [Row 4] -------------------------------
id : 3
firstname : Tricia
lastname : McMillian
comment :

(4 Rows)
SQL>

To switch back to the "tabular" display, use: WbDisplay tab.

19.5. Running SQL scripts that produce a result

Normally when executing a SQL script using WbInclude, the result of such a script (e.g. when it contains a SELECT
statement) is not displayed on the console.

To run such a script, use the command WbRun instead of WbInclude. If you have the following SQL script (named
select_person.sql):

SELECT *
FROM person;

and execute that using the WbInclude command:

SQL> WbInclude -file=select_person.sql;
SQL> Execution time: 0.063s

If you execute this script using WbRun the result of the script is displayed:

SQL> WbRun select_people.sql;
select *
from person;

id | firstname | lastname
---+-----------+------------
1 | Arthur | Dent
4 | Mary | Moviestar
2 | Zaphod | Beeblebrox
3 | Tricia | McMillian

(4 Rows)
Execution time: 0.078s
SQL>

19.6. Controlling the number of rows displayed

In the SQL Workbench/J GUI window, you can limit the reusult of a query by entering a value in the "Max. Rows"
field. If you want to limit the number of rows in console mode you can do this by running the statement

SQL> set maxrows 42;
MAXROWS set to 42
Execution time: 0.0s
SQL>

SQL Workbench/J User's Manual

84

This will limit the number of rows retrieved to 42.

SET MAXROWS has no effect when run as a post-connect script.

19.7. Controlling the query timeout

To set the query timeout in console mode, you can run the following statement

SQL> set timeout 42;
TIMEOUT set to 42
Execution time: 0.0s
SQL>

This will set a query timeout of 42 seconds. Note that not all JDBC drivers support a query timout.

SET TIMEOUT has no effect when run as a post-connect script.

19.8. Managing connection profiles

Connection profiles can be managed through several SQL Workbench/J specific commands. They are primarily
intended to be used in console mode, but can also be used when running in GUI mode.

19.8.1. List available profiles - WbListProfiles

The command WbListProfiles will display a list of all displayed profiles

19.8.2. Delete a profile - WbDeleteProfile

You can delete an existing profile using the command WbDeleteProfile. The command takes one argument, which
is the name of the profile. If the name is unique across all profile groups you don't have to specify a group name. If the
name is not unique, you need to include the group name, e.g.

SQL> WbDeleteProfile {MyGroup}/SQL Server
Do you really want to delete the profile '{MyGroup}/SQL Server'? (Yes/No) yes
Profile '{MyGroup}/SQL Server' deleted
SQL>

As the profile name is the only parameter to this command, no quoting is necessary. Everything after the keyword
WbDeleteProfile will be assumed to be the profile's name

All profiles are automatically saved after executing WbDeleteProfile.

19.8.3. Save the current profile - WbStoreProfile

Saves the currently active connection as a new connection profile. This can be used when SQL Workbench/J if
the connection information was passsed using individual parameters (-url, -username and so on) either on the
commandline or through WbConnect.

SQL> WbStoreProfile {MyGroup}/PostgreSQL Production
Profile '{MyGroup}/PostgreSQL Production' added
SQL>

SQL Workbench/J User's Manual

85

If no parameter switch is given, everything after the keyword WbDeleteProfile will be assumed to be the profile's
name. By default the password is not saved.

Alternatively the command supports the parameters name and savePassword. If you want to store the password in
the profile, the version using parameters must be used:

SQL> WbStoreProfile -name="{MyGroup}/DevelopmentServer" -savePassword=true
Profile '{MyGroup}/DevelopmentServer' added
SQL>

If the current connection references a JDBC driver that is not already defined, a new entry for the driver defintions is
created referencing the library that was passed on the commandline.

All profiles are automatically saved after executing WbStoreProfile.

19.8.4. Create a new connection profile - WbCreateProfile

WbCreateProfile can be used to create a new profile without an existing connection. It accepts the same
parameters as WbConnect plus an additional parameter to define the name of the new profile.

SQL> WbCreateProfile -name="Postgres" -profileGroup=DBA -savePassword=true -username=postgres -password=secret
..> -url=jdbc:postgresql://localhost/postgres
..> -driver=org.postgresql.Driver
..> -driverJar=c:/etc/libs/postgres/postgresql-9.4-1206-jdbc42.jar;
Profile '{DBA}/Postgres' added
SQL>

19.9. PostgreSQL psql commands

Some of the SQL Workbench/J specific commands can be abbreviated using the command syntax from PostgreSQL's
command line client psql. This is only implemented for very few commands and most of them don't work exactly the
same way as the PostgreSQL command.

The following commands are available:

Command Description / SQL Workbench/J command

\q Quit console mode (equivalent to exit

\s WbHistory - display the statement history

\i WbRun - Run a SQL script

\d WbList - Show the list of available tables

\l WbListCat - Show the list of databases

\dn WbListSchemas - Show the list of schemas

\dt DESCRIBE - Show the structure of a table

\df WbListProcs - Show the list of stored procedures

\sf WbProcSource - Show the source code of a stored procedure or function

\g Run the last entered statement again

\! WbSysExec - Run a commandline program

Even though those commands look like the psql commands, they don't work exactly like them. Most importantly
they don't accept the parameters that psql supports. Parameters need to be passed as if the regular SQL Workbench/J
command had been used.

SQL Workbench/J User's Manual

86

20. Export data using WbExport

The WbExport exports contents of the database into external files, e.g. plain text ("CSV") or XML.

The WbExport command can be used like any other SQL command (such as UPDATE or INSERT). This includes the
usage in scripts that are run in batch mode.

The WbExport command exports either the result of the next SQL Statement (which has to produce a result set) or the
content of the table(s) specified with the -sourceTable parameter. The data is directly written to the output file and
not loaded into memory. The export file(s) can be compressed ("zipped") on the fly. WbImport can import the zipped
(text or XML) files directly without the need to unzip them.

If you want to save the data that is currently displayed in the result area into an external file, please use the Save Data as
feature. You can also use the Database Explorer to export multiple tables.

When using a SELECT based export, you have to run both statements (WbExport and SELECT) as one
script. Either select both statements in the editor and choose SQL » Execute selected, or make the two
statements the only statements in the editor and choose SQL » Execute all.

You can also export the result of a SELECT statement, by selecting the statement in the editor, and then choose SQL »
Export query result.

When exporting data into a Text or XML file, the content of BLOB columns is written into separate files. One file
for each column of each row. Text files that are created this way can most probably only be imported using SQL
Workbench/J as the main file will contain the filename of the BLOB data file instead of the actual BLOB data. The
only other application that I know of, that can handle this type of imports is Oracle's SQL*Loader utility. If you run
the text export together with the parameter -formatFile=oracle a control file will be created that contains the
appropriate definitions to read the BLOB data from the external file.

Oracles's BFILE, PostgreSQL's large object and SQL Server's filestream types are not real
BLOB datatypes (from a JDBC point of view) and are currently not exported by WbExport. Only
columns that are reported as BLOB, BINARY, VARBINARY or LONGVARBINARY in the column "JDBC
type" in the DbExplorer will be exported correctly into a separate file.

20.1. Memory usage and WbExport

WbExport is designed to directly write the rows that are retrieved from the database to the export file without buffering
them in memory (except for the XLS and XLSX formats)

Some JDBC drivers (e.g. PostgreSQL, jTDS and the Microsoft driver) read the full result obtained from the database
into memory. In that case, exporting large results might still require a lot of memory. Please refer to the chapter
Common problems for details on how to configure the individual drivers if this happens to you.

20.2. Exporting Excel files

If you need to export data for Microsoft Excel, additional libraries are required to write the native Excel formats (xls
and the new xlsx introduced with Office 2007). Exporting the "SpreadsheetML" format introduced with Office 2003
does not require additional libraries.

SQL Workbench/J supports three different Excel file formats:

Value for -type parameter Description

xlsm This is the plain XML ("SpreadsheetML") format
introduced with Office 2003. This format is always
available and does not need any additional libraries.

SQL Workbench/J User's Manual

87

Value for -type parameter Description

Files with this format should be saved with the extension
xml (otherwise Office is not able to open them properly)

xls This is the old binary format using by Excel 97 up to 2003.
To export this format, only poi.jar is needed. If the
library is not available, this format will not be listed in the
export dialog ("Save data as...")

Files with this format should be saved with the extension
xls

xlsx This is the "new" XML format (OfficeOpen XML)
introduced with Office 2007. To create this file format,
additionaly libraries are required. If those libraries are not
available, this format will not be listed in the export dialog
("Save data as...")

Files with this format should be saved with the extension
xlsx

For a comparison of the different Microsoft Office XML formats please refer to: http://en.wikipedia.org/wiki/
Microsoft_Office_XML_formats

You can download all required POI libraries as a single archive from the SQL Workbench/J home page: http://
www.sql-workbench.net/poi-add-on3.zip. After downloading the archive, unzip it into the directory where
sqlworkbench.jar is located.

To write the file formats XLS and XLSX the entire file needs to be built in memory. When exporting
results with a large number of rows this will require a substantial amount of memory.

WbExport and the "Max. Rows" option

When you use the WbExport command together with a SELECT query, the "Max. Rows" setting will be ignored for
the export.

20.3. General WbExport parameters

Parameter Description

-type Possible values: text, sqlinsert, sqlupdate, sqldeleteinsert, xml,
ods, xlsm, xls, xlsx, html, json

Defines the type of the output file. sqlinsert will create the necessary INSERT
statements to put the data into a table. If the records may already exist in the target
table but you don't want to (or cannot) delete the content of the table before running the
generated script, SQL Workbench/J can create a DELETE statement for every INSERT
statement. To create this kind of script, use the sqldeleteinsert type.

In order for this to work properly the table needs to have keycolumns defined, or you have
to define the keycolumns manually using the -keycolumns switch.

sqlupdate will generate UPDATE statements that update all non-key columns of
the table. This will only generate valid UPDATE statements if at least one key column
is present. If the table does not have key columns defined, or you want to use different
columns, they can be specified using the -keycolumns switch.

http://en.wikipedia.org/wiki/Microsoft_Office_XML_formats
http://en.wikipedia.org/wiki/Microsoft_Office_XML_formats
http://www.sql-workbench.net/poi-add-on3.zip
http://www.sql-workbench.net/poi-add-on3.zip

SQL Workbench/J User's Manual

88

Parameter Description

ods will generate a spreadsheet file in the OpenDocument format that can be opened e.g.
with OpenOffice.org.

xlsm will generate a spreadsheet file in the Microsoft Excel 2003 XML format ("XML
Spreadsheet"). When using Microsoft Office 2010, this export format should should be
saved with a file extension of .xml in order to be identified correctly.

xls will generate a spreadsheet file in the proprietary (binary) format for Microsoft Excel
(97-2003). The file poi.jar is required.

xlsx will generate a spreadsheet file in the default format introduced with Microsoft
Office 2007. Additional external libraries are required in order to be able to use this
format. Please read the note at the beginning of this section.

This parameter supports auto-completion.

-file The output file to which the exported data is written.

This parameter is ignored if -outputDir is also specified.

-createDir If this parameter is set to true, SQL Workbench/J will create any needed directories
when creating the output file.

-sourceTable Defines a list of tables to be exported. If this switch is used, -outputdir is also
required unless exactly one table is specified. If one table is specified, the -file parameter
is used to generate the file for the table. If more then one table is specified, the -
outputdir parameter is used to defined the directory where the generated files should
be stored. Each file will be named as the exported table with the approriate extension
(.xml, .sql, etc). You can specify * as the table name which will then export all tables
accessible by the current user.

If you want to export tables from a different user or schema you can use a schema
name combined with a wildcard e.g. -sourcetable=otheruser.*. In this case
the generated output files will contain the schema name as part of the filename (e.g.
otheruser.person.txt). When importing these files, SQL Workbench/J will try
to import the tables into the schema/user specified in the filename. If you want to import
them into a different user/schema, then you have to use the -schema switch for the
import command.

This parameter supports auto-completion.

-schema Define the schema in which the table(s) specified with -sourceTable are located.
This parameter only accepts a single schema name. If you want to export tables from
more than one schema, you need to fully qualify them as shown in the description of the -
sourceTable parameter.

This parameter supports auto-completion.

-types Selects the object types to be exported. By default only TABLEs are exported. If you want
to export the content of VIEWs or SYNONYMs as well, you have to specify all types with
this parameter.

-sourceTable=* -types=VIEW,SYNONYM or -sourceTable=T% -
types=TABLE,VIEW,SYNONYM

This parameter supports auto-completion.

SQL Workbench/J User's Manual

89

Parameter Description

-excludeTables The tables listed in this parameter will not be exported. This can be used when all but
a few tables should be exported from a schema. First all tables specified through -
sourceTable will be evaluated. The tables specified by -excludeTables can include
wildcards in the same way, -sourceTable allows wildcards.

-sourceTable=* -excludeTables=TEMP* will export all tables, but not those
starting with TEMP.

This parameter supports auto-completion.

-sourceTablePrefix Define a common prefix for all tables listed with -sourceTable. When this parameter
is specified the existence of each table is not tested any longer (as it is normally done).

When this parameter is specified the generated statement for exporting the table is
changed to a SELECT * FROM [prefix]tableName instead of listing all columns
individually.

This can be used when exporting views on tables, when for each table e.g. a view with a
certain prefix exists (e.g. table PERSON has the view V_PERSON and the view does some
filtering of the data.

This parameter can not be used to select tables from a specific schema. The prefix will be
prepended to the table's name.

-outputDir When using the -sourceTable switch with multiple tables, this parameter is
mandatory and defines the directory where the generated files should be stored.

-continueOnError When exporting more than one table, this parameter controls whether the whole export
will be terminated if an error occurs during export of one of the tables.

-encoding Defines the encoding in which the file should be written. Common encodings are
ISO-8859-1, ISO-8859-15, UTF-8 (or UTF8). To get a list of available encodings, execut
WbExport with the parameter -showencoding. This parameter is ignored for XLS,
XLSX and ODS exports.

This parameter supports auto-completion and if it is invoked for this parameter,
it will show a list of encodings defined through the configuration property
workbench.export.defaultencodings This is a comma-separated list that can
be changed using WbSetConfig

-showEncodings Displays the encodings supported by your Java version and operating system. If this
parameter is present, all other parameters are ignored.

-lineEnding Possible values are: crlf, lf

Defines the line ending to be used for XML or text files. crlf puts the ASCII characters
#13 and #10 after each line. This is the standard format on Windows based systems. dos
and win are synonym values for crlf, unix is a synonym for lf.

lf puts only the ASCII character #10 at the end of each line. This is the standard format
on Unix based systems (unix is a synonym value for this format).

The default line ending used depends on the platform where SQL Workbench/J is running.

This parameter supports auto-completion.

-header Possible values: true, false

SQL Workbench/J User's Manual

90

Parameter Description

If this parameter is set to true, the header (i.e. the column names) are placed into the first
line of output file. The default is to not create a header line. You can define the default
value for this parameter in the file workbench.settings. This parameter is valid for text and
spreadsheet (OpenDocument, Excel) exports.

-compress Selects whether the output file should be compressed and put into a ZIP archive. An
archive will be created with the name of the specified output file but with the extension
zip. The archive will then contain the specified file (e.g. if you specify data.txt,
an archive data.zip will be created containing exactly one entry with the name
data.txt). If the exported result set contains BLOBs, they will be stored in a separate
archive, named data_lobs.zip.

When exporting multiple tables using the -sourcetable parameter, then SQL
Workbench/J will create one ZIP archive for each table in the specified output directory
with the filename "tablename".zip. For any table containing BLOB data, one
additional ZIP archive is created.

-tableWhere Defines an additional WHERE clause that is appended to all SELECT queries to retrieve
the rows from the database. No validation check will be done for the syntax or the
columns in the where clause. If the specified condition is not valid for all exported tables,
the export will fail.

-clobAsFile Possible values: true, false

For SQL, XML and Text export this controls how the contents of CLOB fields are
exported. Usually the CLOB content is put directly into the output file When generating
SQL scripts with WbExport this can be a problem as not all DBMS can cope with long
character literals (e.g. Oracle has a limit of 4000 bytes). When this parameter is set to true,
SQL Workbench/J will create one file for each CLOB column value. This is the same
behaviour as with BLOB columns.

Text files that are created with this parameter set to true, will contain the filename of the
generated output file instead of the actual column value. When importing such a file using
WbImport you have to specify the -clobIsFilename=true parameter. Otherwise
the filenames will be stored in the database and not the clob data. This parameter is not
necessary when importing XML exports, as WbImport will automatically recognize the
external files.

SQL exports (-type=sqlinsert) generated with -
clobAsFile=true can only be used with SQL Workbench/J.

All CLOB files that are written using the encoding specified with the -encoding switch.
If the -encoding parameter is not specified the default file encoding will be used.

-lobIdCols When exporting CLOB or BLOB columns as external files, the filename with the LOB
content is generated using the row and column number for the currently exported LOB
column (e.g. data_r15_c4.data). If you prefer to have the value of a unique column
combination as part of the file name, you can specify those columns using the -
lobIdCols parameter. The filename for the LOB will then be generated using the
base name of the export file, the column name of the LOB column and the values of
the specified columns. If you export your data into a file called user_info and specify -
lobIdCols=id and your result contains a column called img, the LOB files will be
named e.g. user_info_img_344.data

SQL Workbench/J User's Manual

91

Parameter Description

-lobsPerDirectory When exporting CLOB or BLOB columns as external files, the generated files can be
distributed over several directories to avoid an excessive number of files in a single
directory. The parameter lobsPerDirectory defines how many LOB files are written
into a single directory. When the specified number of files have been written, a new
directory is created. The directories are always created as a sub-directory of the target
directory. The name for each directory is the base export filename plus "_lobs" plus a
running number. So if you export the data into a file "the_big_table.txt", the LOB files
will be stored in "the_big_table_lobs_1", "the_big_table_lobs_2", "the_big_table_lobs_3"
and so on.

The directories will be created if needed, but if the directories already exist (e.g. because
of a previous export) their contents will not be deleted!

-extensionColumn When exporting CLOB or BLOB columns as external files, the extension of the generated
filenames can be defined based on a column of the result set. If the exported table
contains more than one type of BLOBs (e.g. JPEG, GIF, PDF) and your table stores the
information to define the extension based on the contents, this can be used to re-generate
proper filenames.

This parameter only makes sense if exactly one BLOB column of a table is exported.

-filenameColumn When exporting CLOB or BLOB columns as external files, the complete filename can
be taken from a column of the result set (instead of dynamically creating a new file name
based on the row and column numbers).

This parameter only makes sense if exactly one BLOB column of a table is exported.

-append Possible values: true,false

Controls whether results are appended to an existing file, or overwrite an existing file.
This parameter is only supported for text, SQL, XLS and XLSX export types.

When used with XLS oder XSLX exports, a new worksheet will be created.

-dateFormat The date format to be used when writing date columns into the output file. This parameter
is ignored for SQL exports.

-timestampFormat The format to be used when writing datetime (or timestamp) columns into the output file.
This parameter is ignored for SQL exports.

-blobType Possible values: file, dbms, ansi, base64, pghex

This parameter controls how BLOB data will be put into the generated SQL statements.
By default no conversion will be done, so the actual value that is written to the output file
depends on the JDBC driver's implementation of the Blob interface. It is only valid for
Text, SQL and XML exports, although not all parameter values make sense for all export
types.

The type base64 is primarily intended for Text exports.

The type pghex is intended to be used for export files that should be imported using
PostgreSQL's COPY command.

The types dbms and ansi are intended for SQL exports and generate a representation of
the binary data as part of the SQL statement. DBMS will use a format that is understood
by the DBMS you are exporting from, while ansi will generate a standard hex based
representation of the binary data. The syntax generated by the ansi format is not
understood by all DBMS!

SQL Workbench/J User's Manual

92

Parameter Description

Two additional SQL literal formats are available that can be used together with
PostgreSQL: pgDecode and pgEscape. pgDecode will generate a hex representation
using PostgreSQL's decode() function. Using decode is a very compact format.
pgEscape will use PostgreSQL's escaped octets, and generates much bigger statements
(due to the increase escaping overhead).

When using file, base64 or ansi the file can be imported using WbImport

The parameter value file, will cause SQL Workbench/J to write the contents of each
blob column into a separate file. The SQL statement will contain the SQL Workbench/
J specific extension to read the blob data from the file. For details please refer to BLOB
support. If you are planning to run the generated SQL scripts using SQL Workbench/J this
is the recommended format.

Note that SQL scripts generated with -blobType=file can only be used
with SQL Workbench/J

The parameter value ansi, will generate "binary strings" that are compatible with the
ANSI definition for binary data. MySQL and Microsoft SQL Server support these kind of
literals.

The parameter value dbms, will create a DBMS specific "binary string". MySQL,
HSQLDB, H2 and PostgreSQL are known to support literals for binary data. For other
DBMS using this option will still create an ANSI literal but this might result in an invalid
SQL statement.

This parameter supports auto-completion.

-replaceExpression -
replaceWith

Using these parameters, arbitrary text can be replaced during the export. -
replaceExpression defines the regular expression that is to be replaced. -
replaceWith defines the replacement value. -replaceExpression='(\n|\r
\n)' -replaceWith=' ' will replace all newline characters with a blank.

The search and replace is done on the "raw" data retrieved from the database before the
values are converted to the corresponding output format. In particular this means replacing
is done before any character escaping takes place.

Because the search and replace is done before the data is converted to the output format, it
can be used for all export types (text, xml, Excel, ...).

Only character columns (CHAR, VARCHAR, CLOB, LONGVARCHAR) are taken into
account.

-trimCharData Possible values: true, false

If this parameter is set to true, values from CHAR columns will be trimmed from trailing
whitespace. This is equivalent to the Trim CHAR data in the connection profile.

-showProgress Valid values: true, false, <numeric value>

Control the update frequence in the status bar (when running in GUI mode). The default
is every 10th row is reported. To disable the display of the progress specify a value of 0
(zero) or the value false. true will set the progress interval to 1 (one).

20.4. Parameters for text export

http://www.postgresql.org/docs/current/static/functions-binarystring.html
http://www.postgresql.org/docs/current/static/datatype-binary.html

SQL Workbench/J User's Manual

93

Parameter Description

-delimiter The given string sequence will be placed between two columns. The default is a tab
character (-delimiter=\t

-rowNumberColumn If this parameter is specified with a value, the value defines the name of an additional
column that will contain the row number. The row number will always be exported as the
first column. If the text file is not created with a header (-header=false) a value must
still be provided to enable the creation of the additional column.

-quoteChar The character (or sequence of characters) to be used to enclose text (character) data if the
delimiter is contained in the data. By default quoting is disabled until a quote character
is defined. To set the double quote as the quote character you have to enclose it in single
quotes: -quotechar='"'

-quoteCharEscaping Possible values: none, escape, duplicate

Defines how quote characters that appear in the actual data are written to the output file.

If no quote character has been with the -quoteChar switch, this option is ignored.

If escape is specified, a quote character that is embedded in the exported data is written
as here is a \" quote character.

If duplicate is specified, a quote character that is embedded in the exported data is
written as two quotes e.g. here is a "" quote character.

This parameter supports auto-completion.

-quoteAlways Possible values: true, false

If quoting is enabled (via -quoteChar), then character data will normally only be
quoted if the delimiter is found inside the actual value that is written to the output file.
If -quoteAlways=true is specified, character data will always be enclosed in the
specified quote character. This parameter is ignored if not quote character is specified. If
you expect the quote character to be contained in the values, you should enable character
escaping, otherwise the quote character that is part of the exported value will break the
quote during import.

NULL values will not be quoted even if this parameter is set to true. This is useful to
distinguish between NULL values and empty strings.

-decimal The decimal symbol to be used for numbers. The default is a dot e.g. the number Pi would
be written as 3.14152 When using -decimal=',' the number Pi would be written as:
3,14152

-maxDigits Defines a maximum number of decimal digits. If this parameter is not specified decimal
values are exported according to the global formatting settings

Specifying a value of 0 (zero) results in exporting as many digits as available.

-fixedDigits Defines a fixed number of decimal digits. If this parameter is not specified decimal values
are exported according to the -maxDigits parameter (or the global default).

If this parameter is specified, all decimal values are exported with the defined number of
digits. If -fixedDigits=4 is used, the value 1.2 to be written as 1.2000.

This parameter is ignored if -maxDigits is also provided.

-escapeText This parameter controls the escaping of non-printable or non-ASCII characters. Valid
options are

• control which will escape everything below ASCII 32 (newline, tab, etc)

SQL Workbench/J User's Manual

94

Parameter Description

• 7bit which will escape everything below ASCII 32 and above 126

• 8bit which will escape everything below ASCII 32 and above 255

• extended which will escape everything outside the range [32-126] and [161-255]

• pgcopy which is the same as control but will write the characters as two byte hex
values which are compatible with the input format for PostgreSQL's COPY.

This will write a "short-hand" representation of control characters (e.g. \n for a newline)
and a unicode representation for characters above ASCII 126 (e.g. \u00F6 for ö). This
file can only be imported using SQL Workbench/J (at least I don't know of any DBMS
specific loader that will decode this properly).

If character escaping is enabled, then the quote character will be escaped inside quoted
values and the delimiter will be escaped inside non-quoted values. The delimiter could
also be escaped inside a quoted value if the delimiter falls into the selected escape range
(e.g. a tab character).

To import a text file with escaped values using WbImport, the -decode=true must be
used. Note that WbImport can not handle the pgcopy encoding.

This parameter supports auto-completion.

-nullString Defines the string value that should be written into the output file for a NULL value. This
value will be enclosed with the specified quote character only if -quoteAlways=true
is specified as well.

-formatFile Possible values: postgres, oracle, sqlserver, db2, mysql

This parameter controls the creation of a control file for the bulk load utilities of some
DBMS.

• postgres will create a SQL script with the necessary COPY syntax to import the
generated text file

• oracle will create a control file (.ctl) for Oracle's SQL*Loader utility

• sqlserver will create a format file (.fmt) for Microsoft's bcp utility

• db2will create a SQL script with a DB2 IMPORT command

• mysqlwill create a SQL script with a MySQL LOAD DATA INFILE command

You can specify more than one format (separated by a comma). In that case one control
file for each format will be created.

The generated format file(s) are intended as a starting point for your own
adjustments. Don't expect them to be complete.

This parameter supports auto-completion.

20.5. Parameters for XML export

http://www.postgresql.org/docs/current/static/sql-copy.html
http://download.oracle.com/docs/cd/B28359_01/server.111/b28319/part_ldr.htm
http://msdn.microsoft.com/en-us/library/ms162802%28v=SQL.90%29.aspx
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index.jsp?topic=/com.ibm.db2.luw.admin.cmd.doc/doc/r0008304.html
http://dev.mysql.com/doc/refman/5.5/en/load-data.html

SQL Workbench/J User's Manual

95

Parameter Description

-table The given tablename will be put into the <table> tag as an attribute.

-decimal The decimal symbol to be used for numbers. The default is a dot (e.g. 3.14152)

-useCDATA Possible values: true, false

Normally all data written into the xml file will be written with escaped XML characters
(e.g. < will be written as <). If you don't want that escaping, set -useCDATA=true
and all character data (VARCHAR, etc) will be enclosed in a CDATA section.

With -useCDATA=true a HTML value would be written like this:

<![CDATA[This is a title]]>

With -useCDATA=false (the default) a HTML value would be written like this:

This is a title

-xsltParameter A list of parameters (key/value pairs) that should be passed to the XSLT processor.
When using e.g. the wbreport2liquibase.xslt stylesheet, the value of the
author attribute can be set using -xsltParameter="authorName=42".
This parameter can be provided multiple times for multiple parameters, e.g. when
using wbreport2pg.xslt: -xsltParameter="makeLowerCase=42" -
xsltParameter="useJdbcTypes=true"

-stylesheet The name of the XSLT stylesheet that should be used to transform the SQL Workbench/
J specific XML file into a different format. If -stylesheet is specified, -xsltoutput has to be
specified as well.

-xsltOutput This parameter defines the output file for the XSLT transformation specified through the -
styleSheet parameter

-verboseXML Possible values: true, false

This parameter controls the tags that are used in the XML file and minor formatting
features. The default is -verboseXML=true and this will generate more readable
tags and formatting. However the overhead imposed by this is quite high. Using -
verboseXML=false uses shorter tag names (not longer then two characters) and does put
more information in one line. This output is harder to read for a human but is smaller in
size which could be important for exports with large result sets.

20.6. Parameters for type SQLUPDATE, SQLINSERT or SQLDELETEINSERT

Parameter Description

-table Define the tablename to be used for the UPDATE or INSERT statements. This parameter
is required if the SELECT statement has multiple tables in the FROM list. table.

-charfunc If this parameter is given, any non-printable character in a text/character column will be
replaced with a call to the given function with the ASCII value as the parameter.

If -charfunc=chr is given (e.g. for an Oracle syntax), a CR (=13) inside a character column
will be replaced with:

INSERT INTO ... VALUES ('First line'||chr(13)||'Second
line' ...)

This setting will affect ASCII values from 0 to 31

SQL Workbench/J User's Manual

96

Parameter Description

-concat If the parameter -charfunc is used SQL Workbench/J will concatenate the individual
pieces using the ANSI SQL operator for string concatenation. In case your DBMS does
not support the ANSI standard (e.g. MS ACCESS) you can specify the operator to be
used: -concat=+ defines the plus sign as the concatenation operator.

-sqlDateLiterals Possible values: jdbc, ansi, dbms, default

This parameter controls the generation of date or timestamp literals. By default literals that
are specific for the current DBMS are created. You can also choose to create literals that
comply with the JDBC specification or ANSI SQL literals for dates and timestamps.

jdbc selects the creation of JDBC compliant literals. These should be usable with
every JDBC based tool, including your own Java code: {d '2004-04-28'} or {ts
'2002-04-02 12:02:00.042'}. This is the recommended format if you plan to use
SQL Workbench/J (or any other JDBC based tool) to run the generated statements.

ansi selects the creation of ANSI SQL compliant date literals: DATE '2004-04-28'
or TIMESTAMP '2002-04-02 12:04:00'. Please consult the manual of the target
DBMS, to find out whether it supports ANSI compliant date literals.

default selects the creation of quoted date and timestamp literals in ISO format (e.g.
'2004-04-28'). Several DBMS support this format (e.g. PostgreSQL, Microsoft SQL
Server)

dbms selects the creation of specific literals to be used with the current DBMS (using e.g.
the to_date() function for Oracle). The format of these literals can be customized if
necessary in workbench.settings using the keys workbench.sql.literals.
[type].[datatype].pattern where [type] is the type specified with this
parameter and [datatype] is one of time, date, timestamp. If you add new literal
types, please also adjust the key workbench.sql.literals.types which is
used to show the possible values in the GUI (auto-completion "Save As" dialog, Options
dialog). If no type is specified (or dbms), SQL Workbench/J first looks for an entry where
[type] is the current dbid. If no value is found, default is used.

You can define the default literal format to be used for the WbExport command in the
options dialog.

This parameter supports auto-completion.

-commitEvery A numeric value which identifies the number of INSERT or UPDATE statements after
which a COMMIT is put into the generated SQL script.

-commitEvery=100

will create a COMMIT; after every 100th statement.

If this is not specified one COMMIT; will be added at the end of the script. To
suppress the final COMMIT, you can use -commitEvery=none. Passing -
commitEvery=atEnd is equivalent to -commitEvery=0

-createTable Possible values: true, false

If this parameter is set to true, the necessary CREATE TABLE command is put into the
output file. This parameter is ignored when creating UPDATE statements.

Note that this will only create the table including its primary key. This will not create
other constraints (such as foreign key or unique constraints) nor will it create indexes on
the target table.

SQL Workbench/J User's Manual

97

Parameter Description

-useSchema Possible values: true, false

If this parameter is set to true, all table names are prefixed with the appropriate schema.
The default is taken from the global option Include owner in export

-keyColumns A comma separated list of column names that occur in the table or result set that should be
used as the key columns for UPDATE or DELETE

If the table does not have key columns, or the source SELECT statement uses a join over
several tables, or you do not want to use the key columns defined in the database, this key
can be used to define the key columns to be used for the UPDATE statements. This key
overrides any key columns defined on the base table of the SELECT statement.

-includeAutoIncColumns Possible values: true, false

Default value: defined by global option

With this parameter you can override the global option to include identity and auto-
increment column for INSERT statements.

-
includeReadOnlyColumns

Possible values: true, false

Default value: false

By default, columns that are marked as read-only by the JDBC driver or are defined as a
computed column are not part of generated SQL statements. By setting this parameter to
true, those columns will be included in INSERT statements.

20.7. Parameters for Spreadsheet types (ods, xslm, xls, xlsx)

Parameter Description

-title The name to be used for the worksheet

-infoSheet Possible values: true, false

Default value: false

If set to true, a second worksheet will be created that contains the generating SQL of
the export. For ods exports, additional export information is available in the document
properties.

-fixedHeader Possible values: true, false

Default value: true unless a target sheet is specified

If set to true, the header row will be "frozen" in the Worksheet so that it will not scroll out
of view.

-autoFilter Possible values: true, false

Default value: true unless a target sheet is specified

If set to true, the "auto-filter" fetaure for the column headers will be turned on.

-autoColWidth Possible values: true, false

Default value: true unless a target sheet is specified

If set to true, the width of the columns is adjusted to the width of the content.

SQL Workbench/J User's Manual

98

Parameter Description

-targetSheet -
targetSheetName

Possible values: any valid index or name for a worksheet in an existing Excel file

This parameter is only available for XLS and XLSX exports

When using this parameter, the data will be written into an existing file and worksheet
without changing the formatting in the spreadsheet. No formatting is applied as it is
assumed that the target worksheet is properly set up.

The parameters -autoFilter, -fixedHeader and -autoColWidth
can still be used. If -targetSheet or -targetSheetName are
specified they default to false unless they are explicitely passed as true.

If the parameters -dateFormat or -timestampFormat are specified
together with a target sheet, the format for date/timestamp columns in the
Excel sheet will be overwritten. To overwrite the format in the Excel sheet,
those parameters must be specified explicitely.

If this parameter is used, the target file specified with the -file parameter must already
exist

If -targetSheet is supplied, the value for -targetSheetName is ignored

These parameters support auto-completion if the -file parameter is already supplied.

-offset Possible values: either a column/row combination or a cell reference in Excel format
("D3")

This parameter is only available for XLS and XLSX exports

When this parameter is specified the data is written starting at the specified location. No
data will be written above or to the left of the specified cell.

The values can be given as a numeric row column combination, e.g. -offset=5,6.
Data will then be written starting with the fifth column in the sixth row. Alternatively the
reference can be specified as an Excel reference: -offset=C5.

20.8. Parameters for HTML export

Parameter Description

-createFullHTML Possible values: true, false

Default value: true

If this is set to true, a full HTML page (including <html>, <body> tags) will be created.

-escapeHTML Possible values: true, false

Default value: true

If this is set to true, values inside the data will be escaped (e.g. the < sign will be written
as <) so that they are rendered properly in an HTML page. If your data contains HTML
tag that should be saved as HTML tags to the output, this parameter must be false.

-title The title for the HTML page (put into the <title> tag of the generated output)

-preDataHtml With this parameter you can specify a HTML chunk that will be added before the export
data is written to the output file. This can be used to e.g. create a heading for the data: -
preDataHtml='<h1>List of products</h1>'.

SQL Workbench/J User's Manual

99

Parameter Description

The value will be written to the output file "as is". Any escaping of the HTML must be
provided in the parameter value.

-postDataHtml With this parameter you can specify a HTML chunk that will be added after the data has
been written to the output file.

20.9. Parameters for JSON export

Parameter Description

-nullString Defines the string value that should be written into the output file for a NULL value.

20.10. Compressing export files

The WbExport command supports compressing of the generated output files. This includes the "main" export file as
well as any associated LOB files.

When using WbImport you can import the data stored in the archives without unpacking them. Simply specify the
archive name with the -file parameter. SQL Workbench/J will detect that the input file is an archive and will extract
the information "on the fly". Assume the following export command:

WbExport -type=text -file=/home/data/person.txt -compress=true -sourceTable=person;

This command will create the file /home/data/person.zip that will contain the specified person.txt. To
import this export into the table employee, you can use the following command:

WbImport -type=text -file=/home/data/person.zip -table=employee;

Assuming the PERSON table had a BLOB colum (e.g. a picture of the person), the WbExport command would have
created an additional file called person_blobs.zip that would contain all BLOB data. The WbImport command
will automatically read the BLOB data from that archive.

20.11. Examples

20.11.1. Simple plain text export

WbExport -type=text
 -file='c:/data/data.txt'
 -delimiter='|'
 -decimal=','
 -sourcetable=data_table;

Will create a text file with the data from data_table. Each column will be separated with the character | Each
fractional number will be written with a comma as the decimal separator.

20.11.2. Exporting multiple tables

WbExport -type=text
 -outputDir='c:/data'

SQL Workbench/J User's Manual

100

 -delimiter=';'
 -header=true
 -sourcetable=table_1, table_2, table_3, table_4;

This will export each specified table into a text file in the specified directory. The files are named "table_1.txt",
"table_2.txt" and so on. To export all tables of a schema, the -sourceTable parameter supports wildcards:

WbExport -type=text
 -outputDir='c:/data'
 -delimiter=';'
 -header=true
 -sourcetable=my_schema.*;

Limiting the export data when using a table based export, can be done using the -tableWhere argument. This
requires that the specified WHERE condition is valid for all tables, e.g. when every table has a column called
MODIFIED_DATE

WbExport -type=text
 -outputDir='c:/data'
 -delimiter=';'
 -header=true
 -tableWhere="WHERE modified_date > DATE '2009-04-02'"
 -sourcetable=table_1, table_2, table_3, table_4;

This will add the specified where clause to each SELECT, so that only rows are exported that were changed after April
2nd, 2009

20.11.3. Export based on a SELECT statement

WbExport -type=text
 -file='c:/data/data.txt'
 -delimiter=','
 -decimal=','
 -dateFormat='yyyy-MM-dd';
SELECT * FROM data_table;

20.11.4. Export a complete schema

To export all tables from the current connection into tab-separated files and compress the files, you can use the
following statement:

WbExport -type=text
 -outputDir=c:/data/export
 -compress=true
 -sourcetable=*;

This will create one zip file for each table containing the exported data as a text file. If a table contains BLOB columns,
the blob data will be written into a separate zip file.

The files created by the above statement can be imported into another database using the following command:

WbImport -type=text
 -sourceDir=c:/data/export
 -extension=zip
 -checkDependencies=true;

SQL Workbench/J User's Manual

101

20.11.5. Export as SQL INSERT script

To generate a file that contains INSERT statements that can be executed on the target system, the following command
can be used:

WbExport -type=sqlinsert
 -file='c:/data/newtable.sql'
 -table=newtable;
SELECT * FROM table1, table2
WHERE table1.column1 = table2.column1;

will create a SQL script which that contains statements like INSERT INTO newtable (...) VALUES (...);
and the list of columns are all columns that are defined by the SELECT statement.

If the parameter -table is omitted, the creation of SQL INSERT statements is only possible, if the SELECT is based on
a single table (or view).

20.11.6. Exporting LOB data
To extract the contents of CLOB columns you have to specify the parameter -clobAsFile=true,
otherwise the contents of the CLOB columns will be written directly into the export file. BLOB columns
will always be exported into separate tables.

When exporting tables that contain BLOB columns, one file for each blob column and row will be created. By default
the generated filenames will contain the row and column number to make the names unique. You can however control
the creation of filenames when exporting LOB columns using several different approaches. If a unique name is stored
within the table you can use the -filenameColumn parameter to generate the filenames based on the contents of that
column:

WbExport -file='c:/temp/blob_table.txt'
 -type=text
 -delimiter=','
 -filenameColumn=file_name;

Will create the file blob_table.txt and for each blob a file where the name is retrieved from the column
BLOB_TABLE.FILE_NAME. Note that if the filename column is not unique, blob files will be overwritten without an
error message.

You can also base the export on a SELECT statement and then generate the filename using several columns:

WbExport -file='c:/temp/blob_table.txt'
 -type=text
 -delimiter=','
 -filenameColumn=fname;
SELECT blob_column, 'data_'||id_column||'_'||some_name||'.'||type_column as fname
FROM blob_table;

This examples assumes that the following columns are part of the table blob_table: id_column, some_name and
type_column. The filenames for the blob of each row will be taken from the computed column fname. To be able
to reference the column in the WbExport you must give it an alias.

This approach assumes that only a single blob column is exported. When exporting multiple blob columns from a single
table, it's only possible to create unique filenames using the row and column number (the default behaviour).

20.11.7. Replace data during export

When writing the export data, values in character columns can be replaced using regular expressions.

SQL Workbench/J User's Manual

102

WbExport -file='/path/to/export.txt'
 -type=text
 -replaceExpression='(\n|\r\n)' -replaceWith='*'
 -sourceTable=export_table;

This will replace each newline (either Windows' CR/LF or Unix LF) with the character *.

The value for -replaceExpression defines a regular expression. In the example above multiple new lines will
be replace with multiple * characters. To replace consecutive new lines with a single * character, use the regular
expression -replaceExpression='(\n|\r\n)+'. (Note the + sign after the brackets)

SQL Workbench/J User's Manual

103

21. Import data using WbImport

The WbImport command can be used to import data from text, XML or Spreadsheet (ODS, XLS, XLSX) files into
a table of the database. WbImport can read the XML files generated by the WbExport command's XML format. It can
also read text files created by the WbExport command that escape non-printable characters.

The WbImport command can be used like any other SQL command (such as UPDATE or INSERT), including scripts
that are run in batch mode.

During the import of text files, empty lines (i.e. lines which only contain whitespace) will be silently ignored.

WbImport recognizes certain "literals" to identify the current date or time when converting values from text files to
the appropriate data type of the DBMS. Thus, input values like now, or current_timestamp for date or timestamp
columns are converted correctly. For details on which "literals" are supported, please see the description about editing
data [54].

The DataPumper can also be used to import text files into a database table, though it does not offer all of the
possibilities from the WbImport command.

Archives created with the WbExport command using the -compress=true parameter can be imported using
WbImport command. You simply need to specifiy the archive file created by WbExport, and WbImport will
automatically detect the archive. For an example to create and import compressed exports, please refer to compressing
export files

If you use continueOnError=true and expect a substantial number of rows to fail, it is highly
recommended to also use a "bad file" to log all rejected records. Otherwise the rejected records are stored
in memory (until the import finishes) which may lead to an out of memory error.

21.1. Importing spreadsheet files

In order to import Microsoft Excel (XSL, XSLT) or OpenOffice Calc (ODS) files, additional libraries are needed. For
Excel the same libraries [87] are needed as for exporting those formats. For OpenOffice additional libraries are needed.
All needed libraries are included in the download bundle named with-office-libs.zip If you did not download
that bundle, you can download the libraries needed for OpenOffice from here: http://www.sql-workbench.net/odf-add-
on3.zip.

You can tell if the needed libraries are installed if you invoke the auto-completion after typing the -type= parameter.
If the types XLS or ODS are presented in the drop down, the libraries installed.

The Excel import supports XLS and XLSX, it does not support the "SpreadsheetML" format.

To import XLS or XLSX files, the entire file needs to be read into memory. When importing large files
this will require a substantial amount of memory.

21.2. General parameters

The WbImport command has the following syntax

Parameter Description

-type Possible values: xml, text, ods, xls

Defines the type of the input file. This is only needed if the input file has a non-standard
file extensions. If this parameter is not specified, the import type is derived from the input
file's extension.

http://www.sql-workbench.net/odf-add-on3.zip
http://www.sql-workbench.net/odf-add-on3.zip

SQL Workbench/J User's Manual

104

Parameter Description

-mode Defines how the data should be sent to the database. Possible values are 'insert',
'update', 'insert,update' and 'update,insert' For details please refer to the
update mode explanation.

For some DBMS, the additional modes: 'upsert' and 'insertIgnore' are supported.
For details please refer to the native upsert and native insertIgnore explanation.

-file Defines the full name of the input file. Alternatively you can also specify a directory
(using -sourcedir) from which all files are imported.

-table Defines the table into which the data should be imported

This parameter is ignored, if the files are imported using the -sourcedir parameter

This parameter supports auto-completion.

-sourceDir Defines a directory which contains import files. All files from that directory will be
imported. If this switch is used with text files and no target table is specified, then it is
assumed that each filename (without the extension) defines the target table. If a target
table is specified using the -table parameter, then all files will be imported into the
same table. The -deleteTarget will be ignored if multiple files are imported into a
single table.

-extension When using the -sourcedir switch, the extension for the files can be defined. All
files ending with the supplied value will be processed. (e.g. -extension=csv). The
extension given is case-sensitive (i.e. TXT is something different than txt

-ignoreOwner If the file names imported with from the directory specified with -sourceDir contain the
owner (schema) information, this owner (schema) information can be ignored using this
parameter. Otherwise the files might be imported into a wrong schema, or the target tables
will not be found.

-excludeFiles Using -excludeFiles, files from the source directory (when using -sourceDir) can be
excluded from the import. The value for this parameter is a comma separated list of partial
names. Each file that contains at least one of the values supplied in this parameter is
ignored. -excludeFiles=back,data will exclude any file that contains the value
back or data in it, e.g.: backup, to_back, log_data_store etc.

-checkDependencies When importing more than one file (using the -sourcedir switch), into tables with
foreign key constraints, this switch can be used to import the files in the correct order
(child tables first). When -checkDependencies=true is passed, SQL Workbench/
J will check the foreign key dependencies for all tables. Note that this will not check
dependencies in the data. This means that e.g. the data for a self-referencing table (parent/
child) will not be order so that it can be imported. To import self-referencing tables, the
foreign key constraint should be set to "initially deferred" in order to postpone evaluation
of the constraint until commit time.

-commitEvery If your DBMS neeeds frequent commits to improve performance and reduce locking on
the import table you can control the number of rows after which a COMMIT is sent to the
server.

-commitEveryis numeric value that defines the number of rows after which a COMMIT
is sent to the DBMS. If this parameter is not passed (or a value of zero or lower), then the
import is run as a single transaction that is committed at the end.

When using batch import and your DBMS requires frequent commits to improve import
performance, the -commitBatch option should be used instead.

You can turn off the use of a commit or rollback during import completely by using the
option -transactionControl=false.

SQL Workbench/J User's Manual

105

Parameter Description

Using -commitEvery means, that in case of an error the already imported rows cannot
be rolled back, leaving the data in a potential invalid state.

-transactionControl Possible values: true, false

Controls if SQL Workbench/J handles the transaction for the import, or if the import
must be committed (or rolled back) manually. If -transactionControl=false is
specified, SQL Workbench/J will neither send a COMMIT nor a ROLLBACK at the end.
This can be used when multiple files need to be imported in a single transaction. This can
be combined with the cleanup and error scripts in batch mode.

-continueOnError Possible values: true, false

This parameter controls the behavior when errors occur during the import. The default is
true, meaning that the import will continue even if an error occurs during file parsing or
updating the database. Set this parameter to false if you want to stop the import as soon
as an error occurs.

The default value for this parameter can be controlled in the settings file and it will be
displayed if you run WbImport without any parameters.

With PostgreSQL continueOnError will only work, if the use of savepoints is
enabled using -useSavepoint=true.

-emptyFile Possible values: ignore, warning, fail

This parameter controls the behavior when an empty file (i.e. with a length of zero
bytes) is used for the input file. ignore means the file is ignored, no warning will
be shown or written to the log file. warning means the file is ignored, but a warning
will be shown and logged. With fail an empty file will be treated as an error unless -
continueOnError=true is specified.

The default value is fail

-useSavepoint Possible values: true, false

Controls if SQL Workbench/J guards every insert or update statement with a savepoint to
recover from individual error during import, when continueOnError is set to true.

Using a savepoint for each DML statement can drastically reduce the performance of the
import.

-keyColumns Defines the key columns for the target table. This parameter is only necessary if import is
running in UPDATE mode.

It is assumed that the values for the key columns will never be NULL.

This parameter is ignored if files are imported using the -sourcedir parameter.

-ignoreIdentityColumns Possible values: true, false

Controls if identity or auto-increment columns will be included in the import.

If this is used, the JDBC driver must correctly report the column to be excluded as an
AUTOINCREMENT column. This can be verified in the table definition display of the
DbExplorer. If the column is reported with YES for the AUTOINCREMENT property, then
this column will be excluded during the import.

SQL Workbench/J User's Manual

106

Parameter Description

-schema Defines the schema into which the data should be imported. This is necessary for DBMS
that support schemas, and you want to import the data into a different schema, then the
current one.

-encoding Defines the encoding of the input file (and possible CLOB files)

If auto-completion is invoked for this parameter, it will show a list of encodings defined
through the configuration property workbench.export.defaultencodings This
is a comma-separated list that can be changed using WbSetConfig

-deleteTarget Possible values: true, false

If this parameter is set to true, data from the target table will be deleted (using DELETE
FROM ...) before the import is started. This parameter will only be used if -
mode=insert is specified.

This parameter is ignored for spreadsheet imports.

-truncateTable Possible values: true, false

This is essentially the same as -deleteTarget, but will use the command TRUNCATE
to delete the contents of the table. For those DBMS that support this command, deleting
rows is usually faster compared to the DELETE command, but it cannot be rolled back.
This parameter will only be used if -mode=insert is specified.

-batchSize A numeric value that defines the size of the batch queue. Any value greater than 1
will enable batch mode. If the JDBC driver supports this, the INSERT (or UPDATE)
performance can be increased drastically.

This parameter will be ignored if the driver does not support batch updates or if
the mode is not UPDATE or INSERT (i.e. if -mode=update,insert or -
mode=insert,update is used).

-commitBatch Possible values: true, false

If using batch execution (by specifying a batch size using the -batchSize parameter)
each batch will be committed when this parameter is set to true. This is slightly different
to using -commitEvery with the value of the -batchSize parameter. The latter one
will add a COMMIT statement to the batch queue, rather than calling the JDBC commit()
method. Some drivers do not allow to add different statements in a batch queue. So, if a
frequent COMMIT is needed, this parameter should be used.

When you specify -commitBatch the parameter -commitEvery will be ignored. If
no batch size is given (using -batchSize, then -commitBatch will also be ignored.

-updateWhere When using update mode an additional WHERE clause can be specified to limit the rows
that are updated. The value of the -updatewhere parameter will be added to the
generated UPDATE statement. If the value starts with the keyword AND or OR the value
will be added without further changes, otherwise the value will be added as an AND clause
enclosed in brackets. This parameter will be ignored if update mode is not active.

-startRow A numeric value to define the first row to be imported. Any row before the specified row
will be ignored. The header row is not counted to determine the row number. For a text
file with a header row, the physical line 2 is row 1 (one) for this parameter.

When importing text files, empty lines in the input file are silently ignored and do not add
to the count of rows for this parameter. So if your input file has two lines to be ignored,
then one empty line and then another line to be ignored, startRow must be set to 4.

SQL Workbench/J User's Manual

107

Parameter Description

-endRow A numeric value to define the last row to be imported. The import will be stopped after
this row has been imported. When you specify -startRow=10 and -endRow=20 11
rows will be imported (i.e. rows 10 to 20). If this is a text file import with a header row,
this would correspond to the physical lines 11 to 21 in the input file as the header row is
not counted.

-columnFilter This defines a filter on column level that selects only certain rows from
the input file to be sent to the database. The filter has to be defined as
column1="regex",column2="regex". Only Rows matching all of the supplied
regular expressions will be included by the import.

This parameter is ignored when the -sourcedir parameter is used.

-badFile Possible values: true, false

If -continueOnError=true is used, you can specify a file to which rejected rows
are written. If the provided filename denotes a directory a file with the name of the import
table will be created in that directory. When doing multi-table inserts you have to specify
a directory name.

If a file with that name exists it will be deleted when the import for the table is started. The
fill will not be created unless at least one record is rejected during the import. The file will
be created with the same encoding as indicated for the input file(s).

-maxLength With the parameter -maxLength you can truncate data for character columns
(VARCHAR, CHAR) during import. This can be used to import data into columns that are
not big enough (e.g. VARCHAR columns) to hold all values from the input file and to
ensure the import can finish without errors.

The parameter defines the maximum length for certain columns using the following
format: -maxLength='firstname=30,lastname=20' Where firstname and
lastname are columns from the target table. The above example will limit the values
for the column firstname to 30 characters and the values for the column lastname to 20
characters. If a non-character column is specified this is ignored. Note that you have quote
the parameter's value in order to be able to use the "embedded" equals sign.

-booleanToNumber Possible values: true, false

In case you are importing a boolean column (containing "true", "false") into a
numeric column in the target DBMS, SQL Workbench/J will automatically convert
the literal true to the numeric value 1 (one) and the literal false to the numeric
value 0 (zero). If you do not want this automatic conversion, you have to specify -
booleanToNumber=false for the import. The default values for the true/false literals
can be overwritten with the -literalsFalse and -literalsTrue switches.

To store different values than 0/1 in the target column, use the parameters -
numericFalse and -numericTrue

This parameter is ignored for spreadsheet imports

-numericFalse -
numericTrue

These parameters control the conversion of boolean literals into numbers.

If these parameters are used, any text input that is identified as a "false" literal, will be
stored with the number specified with -numericFalse. Any text input that is identified
as "true" will be stored as the number specified with -numericFalse.

SQL Workbench/J User's Manual

108

Parameter Description

To use -1 for false and 1 for true, use the following parameters: -
numericFalse='-1' -numericTrue='1'. Note that '-1' must be quoted due
to the dash. If these parameters are used, -booleanToNumber will be assumed true
implicitely.

These parameters can be combined with -literalsFalse and -listeralsTrue.

Please note:

• This conversion is only applied for "text" input values. Valid numbers in the input
file will not be converted to the values specified with -numericFalse or -
numericTrue. This means that you cannot change a 0 (zero) in the input file into a
-1 in the target column.

This parameter is ignored for spreadsheet imports

-literalsFalse -literalsTrue These parameters control the conversion of boolean literals into boolean values.

These two switches define the text values that represent the (boolean) values false and
true in the input file. This conversion is applied when storing the data in a column that is
of type boolean in the database.

The value to these switches is a comma separated list of literals that should
be treated as the specified value, e.g.: -literalsFalse='false,0' -
literalsTrue='true,1' will define the most commonly used values for true/false.

Please note:

• The definition of the literals is case sensitive!

• You always have to specify both switches, otherwise the definition will be ignored

This parameter is ignored for spreadsheet imports

-constantValues With this parameter you can supply constant values for one or more columns that will be
used when inserting new rows into the database.

The constant values will only be used when inserting rows (e.g. using -mode=insert)

The format of the values is -
constantValues="column1=value1,column2=value2".
The parameter can be repeated multiple times, to make quoting
easier: -constantValues="column1=value1" -
constantValues="column2=value2" The values will be converted by the same
rules as the input values from the input file. If the value for a character column is enclosed
in single quotes, these will be removed from the value before sending it to the database.
To include single quotes at the start or end of the input value you need to use two single
quotes, e.g.-constantValues="name=''Quoted'',title='with space'"
For the field name the value 'Quoted' will be sent to the database. for the field title
the value with space will be sent to the database.

To specify a function call to be executed, enclose the function call in ${...}, e.g.
${mysequence.nextval} or ${myfunc()}. The supplied function will be put into
the VALUES part of the INSERT statement without further checking (after removing the
${ and } characters, of course). So make sure that the syntax is valid for your DBMS. If
you do need to store a literal like ${some.value} into the database, you need to quote
it: -constantValues="varname='${some.value}'".

SQL Workbench/J User's Manual

109

Parameter Description

You can also specify a SELECT statement that retrieves information from the database
based on values from the input file. This is useful when the input file contains e.g. values
from a lookup table (but not the primary key from the lookup table).

The syntax to specify a SELECT statement is similar to a function call: -
constantValues="$@{SELECT type_id FROM type_definition WHERE
type_name = $4" where $4 references the fourth column from the input file. The first
column is $1 (not $0).

The parameter for the SELECT statement do not need to be quoted as internally a
prepared statement is used. However the values in the input file must be convertible by the
JDBC driver.

In addition to the function call or SELECT statements, WbImport provides three variables
that can be used to access the name of the currently imported file. This can be used to
store the source file of the data in the target table.

The following three variables are supported

• _wb_import_file_path this contains the full path and file name of the current
import file

• _wb_import_file_name this contains only the file name (without the path)

• _wb_import_file_dir this contains only the path of the file without the filename
(and without the extension)

Please refer to the examples for more details on the usage.

-insertSQL Define the statement to be used for inserting rows.

This can be used to use hints or customize the generated INSERT statement. The
parameter may only contain the INSERT INTO part of the statement (i.e. INSERT
INTO is the default if nothing is specified). This can be used to pass special hints to the
database, e.g. to specify an append hint for Oracle:

You have to quote the parameter value using single quotes, otherwise
comments will be removed from the SQL statement!

-insertSQL='INSERT /*+ append */ INTO'

-adjustSequences Possible values: true, false

For DBMS that support sequences which are associated with a column, this parameter
can be used to adjust the next value for the sequence to the maximum value of the
imported data. This can also be used to synchronize identity columns for DBMS that allow
overriding the generated values.

Currently this is implemented for PostgreSQL, DB2 (LUW), H2 Database and HyperSQL
(aka HSQLDB).

-preTableStatement -
postTableStatement

This parameter defines a SQL statement that should be executed before the import
process starts inserting data into the target table. The name of the current table (when e.g.
importing a whole directory) can be referenced using ${table.name}.

To define a statement that should be executed after all rows have been inserted and have
been committed, you can use the -postTableStatement parameter.

SQL Workbench/J User's Manual

110

Parameter Description

These parameters can e.g. be used to enable identity insert for MS SQL Server:

-preTableStatement="set identity_insert ${table.name} on"
-postTableStatement="set identity_insert ${table.name} off"

Errors resulting from executing these statements will be ignored. If you want to abort
the import in that case you can specify -ignorePrePostErrors=false and -
continueOnError=false.

These statements are only used if more than one table is processed.

-
runTableStatementOnError

Possible values: true, false

Controls the execution of the post-table statement in case an error occurred
while importing the data. By default the post-table statement is executed
even if the import was not successful. If this is should not happen, use -
runTableStatementOnError=false.

-ignorePrePostErrors Possible values: true, false

Controls handling of errors for the SQL statements defined through the -
preTableStatement and -postTableStatement parameters. If this is set to true
(the default), errors resulting from executing the supplied statements are ignored. If set to
false then error handling depends on the parameter -continueOnError.

-showProgress Valid values: true, false, <numeric value>

Control the update frequence in the status bar (when running in GUI mode). The default
is every 10th row is reported. To disable the display of the progress specify a value of 0
(zero) or the value false. true will set the progress interval to 1 (one).

21.3. Parameters for the type TEXT

Parameter Description

-fileColumns A comma separated list of the table columns in the import file Each column from the file
should be listed with the appropriate column name from the target table. This parameter
also defines the order in which those columns appear in the file. If the file does not contain
a header line or the header line does not contain the names of the columns in the database
(or has different names), this parameter has to be supplied. If a column from the input file
has no match in the target table, then it should be specified with the name wb_skip.
You can also specify the wb_skip flag for columns which are present but that you
want to exclude from the import.

This parameter is ignored when the -sourceDir parameter is used.

-importColumns Defines the columns that should be imported. If all columns from the input file should
be imported (the default), then this parameter can be ommited. If only certain columns
should be imported then the list of columns can be specified here. The column names
should match the names provided with the -filecolumns switch. The same result can be
achieved by providing the columns that should be excluded as wb_skip columns in
the -filecolumns switch. Which one you choose is mainly a matter of taste. Listing all
columns and excluding some using -importcolumns might be more readable because
the structure of the file is still "visible" in the -filecolumns switch.

This parameter is ignored when the -sourcedir parameter is used.

SQL Workbench/J User's Manual

111

Parameter Description

-delimiter Define the character which separates columns in one line. Records are always separated
by newlines (either CR/LF or a single a LF character) unless -multiLine=true is
specified

Default value: \t (a tab character)

-columnWidths In order to import files that do not have a delimiter but have a fixed width for each
column, this parameters defines the width of each column in the input file. The value
for this parameter is a comma separated list, where each element defines the width in
characters for each column. If this parameter is given, the -delimiter parameter
is ignored. The order of the columns in the input file must still be defined using the -
fileColumns parameter.

e.g.: -fileColumns=custid,actcode,regioncd,flag -
columnWidths='custid=10,actcode=5,regioncd=3,flag=1'

Note that the whole list must be enclosed in quotes as the parameter value contains the
equal sign.

If you want to import only certain columns you have to use -fileColumns and -
importColumns to select the columns to import. You cannot use wb_skip in the -
fileColumns parameter with a fixed column width import.

-dateFormat The format for date columns.

-timestampFormat The format for datetime (or timestamp) columns in the input file.

-illegalDateIsNull If this is set to true, illegal dates (such as February, 31st) or malformed dates inside the
input file will be treated as a null value.

-quoteChar The character which was used to quote values where the delimiter is contained. This
parameter has no default value. Thus if this is not specified, no quote checking will take
place. If you use -multiLine=true you have to specify a quote character in order for
this to work properly.

-quoteAlways Possible values: true, false

WbImport will always handled quoted values correctly, if a quote character is defined
through -quoteChar.

Using -quoteAlways=true enables the distinction between NULL values and empty
strings in the import file, but only if -quoteAlways=true has also been used when
running WbExport. Remember to also use -emptyStringIsNull=false, as by
default empty string values are treated as NULLs

-quoteCharEscaping Possible values: none, escape, duplicate

Defines how quote characters that appear in the actual data are stored in the input file.

You have to define a quote character in order for this option to have an effect. The
character defined with the -quoteChar switch will then be imported according to the
setting defined by this switch.

If escape is specified, it is expected that a quote that is part of the data is preceded
with a backslash, e.g. the input value here is a \" quote character will be
imported as here is a " quote character

SQL Workbench/J User's Manual

112

Parameter Description

If duplicate is specified, it is expected that the quote character is duplicated in the
input data. This is similar to the handling of single quotes in SQL literals. The input value
here is a "" quote character will be imported as here is a " quote
character

-multiLine Possible values: true, false

Enable support for records spanning more than one line in the input file. These records
have to be quoted, otherwise they will not be recognized.

If you create your exports with the WbExport command, it is recommended to encode
special characters using the -escapetext switch rather then using multi-line records.

The default value for this parameter can be controlled in the settings file and it will be
displayed if you run WbImport without any parameters.

-decimal The decimal symbol to be used for numbers. The default is a dot

-header Possible values: true, false

If set to true, indicates that the file contains a header line with the column names for the
target table. This will also ignore the data from the first line of the file. If the column
names to be imported are defined using the -filecolumns or the -importcolumns
switch, this parameter has to be set to true nevertheless, otherwise the first row would be
treated as a regular data row.

This parameter is always set to true when the -sourcedir parameter is used.

The default value for this option can be changed in the settings file and it will be
displayed if you run WbImport without any parameters. It defaults to true

-decode Possible values: true, false

This controls the decoding of escaped characters. If the export file was e.g. written with
WbExport's escaping enabled then you need to set -decode=true in order to interpret
string sequences like \t, \n or escaped Unicode characters properly. This is not enabled by
default because applying the necessary checks has an impact on the performance.

-lineFilter This defines a filter on the level of the whole input row (rather than for each column
individually). Only rows matching this regular expression will be included in the import.

The complete content of the row from the input file will be used to check the regular
expression. When defining the expression, remember that the (column) delimiter will be
part of the input string of the expression.

-emptyStringIsNull Possible values: true, false

Controls whether input values for character type columns with a length of zero are treated
as NULL (value true) or as an empty string.

The default value for this parameter is true

Note that, input values for non character columns (such as numbers or date columns) that
are empty or consist only of whitespace will always be treated as NULL.

-nullString Defines the string value that in the input file to denote a NULL value. The value of this is
case-sensitive, so -nullString=NULL is different to -nullString=null

-trimValues Possible values: true, false

SQL Workbench/J User's Manual

113

Parameter Description

Controls whether leading and trailing whitespace are removed from the input
values before they are stored in the database. When used in combination with -
emptyStringIsNull=true this means that a column value that contains only
whitespace will be stored as NULL in the database.

The default value for this parameter can be controlled in the settings file and it will be
displayed if you run WbImport without any parameters.

Note that, input values for non character columns (such as numbers or date columns) are
always trimmed before converting them to their target datatype.

-blobIsFilename Possible values: true, false

This is a deprecated parameter. Please use -blobType instead.

When exporting tables that have BLOB columns using WbExport into text files, each
BLOB will be written into a separate file. The actual column data of the text file will
contain the file name of the external file. When importing text files that do not reference
external files into tables with BLOB columns setting this parameter to false, will send the
content of the BLOB column "as is" to the DBMS. This will of course only work if the
JDBC driver can handle the data that in the BLOB columns of the text file. The default for
this parameter is true

This parameter is ignored, if -blobType is also specified.

-blobType Possible values: file, ansi, base64

Specifies how BLOB data is stored in the input file. If file is specified, it is assumed
that the column value contains a filename that in turn contains the real blob data. This is
the default format when using WbExport.

For the other two type, WbImport assumes that the blob data is stored as encoded
character data in the column.

If this parameter is specified, -blobIsFilename is ignored.

-clobIsFilename Possible values: true, false

When exporting tables that have CLOB columns using WbExport and the parameter -
clobAsFile=true the generated text file will not contain the actual CLOB contents,
but the a filename indicating the file in which the CLOB content is stored. In this case -
clobIsFilename=true has to be specified in order to read the CLOB contents from
the external files. The CLOB files will be read using the encoding specified with the -
encoding parameter.

-usePgCopy This parameter has no value, its presence turns the feature on.

If this parameter is specified, then the input file is sent to the PostgreSQL server using
PostgreSQL's JDBC support for COPY

The specified file(s) must conform to the format expected by PostgreSQL's COPY
command. SQL Workbench/J creates a COPY tablename (column, ...) FROM
stdin WITH (format csv, delimiter '|', header true) statement and
then executes this, passing the actual file contents through the JDBC API.

As COPY does not support "merging" of data, the only allowed import mode is insert.
If a different mode is specified through the -mode parameter, an error will be reported.

http://jdbc.postgresql.org/documentation/publicapi/org/postgresql/copy/CopyManager.html
http://www.postgresql.org/docs/current/static/sql-copy.html

SQL Workbench/J User's Manual

114

Parameter Description

The options defined in the WITH (...) part are influenced by the parameters passed
to WbImport. However COPY does not support all options that WbImport does. To
control the format of the input file(s) only the following parameters are relevant when
using -usePgCopy:

• -header

• -encoding

• -delimiter

Especially the formatting options for dates/timestamps and numbers will have no effect.
So the input file must be formatted properly.

All parameters controlling the target table(s), the columns, the source directory and so on
still work. Including the import directly from a ZIP archive.

21.4. Text Import Examples

21.4.1. Importing date columns

WbImport -file=c:/temp/contacts.txt
 -table=person
 -filecolumns=lastname,firstname,birthday
 -dateformat="yyyy-MM-dd";

This imports a file with three columns into a table named person. The first column in the file is lastname, the second
column is firstname and the third column is birthday. Values in date columns are formated as yyyy-MM-dd

A special timestamp format millis is availalbe to identify times represented in milliseconds (since
January 1, 1970, 00:00:00 GMT).

21.4.2. Excluding input columns from the import

WbImport -file=c:/temp/contacts.txt
 -table=person
 -filecolumns=lastname,firstname,wb_skip,birthday
 -dateformat="yyyy-MM-dd";

This will import a file with four columns. The third column in the file does not have a corresponding column in the
table person so its specified as wb_skip and will not be imported.

WbImport -file=c:/temp/contacts.txt
 -table=person
 -filecolumns=lastname,firstname,phone,birthday
 -importcolumns=lastname,firstname;

This will import a file with four columns where all columns exist in the target table. Only lastname and
firstname will be imported. The same effect could be achieved by specifying wb_skip for the last two columns
and leaving out the -importcolumns switch. Using -importcolumns is a bit more readable because you can still see the
structure of the input file. The version with wb_skip is mandatory if the input file contains columns that do not
exist in the target table.

SQL Workbench/J User's Manual

115

21.4.3. Importing a file with fixed column widths

WbImport -file=cust_data.txt
 -table=customer
 -filecolumns=custnr,accountid,region_code
 -columnWidths='custnr=10,accountid=10,region_code=2';

This will import a file with three columns. The first column named custnr is taken from the characters 1-10, the
second column named accountid is taken from the characters 21-30 and the third the column region_code is
taken from characters 31 and 32

21.4.4. Filtering rows during import

If you want to import certain rows from the input file, you can use regular expressions:

WbImport -file=c:/temp/contacts.txt
 -table=person
 -filecolumns=lastname,firstname,birthday
 -columnfilter=lastname="^Bee.*",firstname="^Za.*"
 -dateformat="yyyy-MM-dd";

The above statement will import only rows where the column lastname contains values that start with Bee and the
column firstname contains values that start with Za. So Zaphod Beeblebrox would be imported, Arthur
Beeblebrox would not be imported.

If you want to learn more about regular expressions, please have a look at http://www.regular-expressions.info/

If you want to limit the rows that are updated but cannot filter them from the input file using -columnfilter or -
linefilter, use the -updatewhere parameter:

WbImport -file=c:/temp/contacts.txt
 -table=person
 -filecolumns=id,lastname,firstname,birthday
 -keycolumns=id
 -mode=update
 -updatewhere="source <> 'manual'"

This will update the table PERSON. The generated UPDATE statement would normally be: UPDATE person SET
lastname=?, firstname=?, birthday=? WHERE id=?. The table contains entries that are maintained
manually (identified by the value 'manual' in the column source) and should not be updated by SQL Workbench/J.
By specifying the -updatewhere parameter, the above UPDATE statement will be extended to WHERE id=? AND
(source <> 'manual'). Thus skipping records that are flagged as manual even if they are contained in the input
file.

21.4.5. Importing several files

WbImport -sourceDir=c:/data/backup
 -extension=txt
 -header=true

This will import all files with the extension txt located in the directory c:/data/backup into the database. This
assumes that each filename indicates the name of the target table.

WbImport -sourceDir=c:/data/backup
 -extension=txt
 -table=person
 -header=true

http://www.regular-expressions.info/

SQL Workbench/J User's Manual

116

This will import all files with the extension txt located in the directory c:/data/backup into the table person
regardless of the name of the input file. In this mode, the parameter -deleteTarget will be ignored.

21.4.6. Storing the name of the source file

The following statement will import all .txt files from the directory /data/import and store them in the
appropriate tables. Each table that is being imported has to have a column named source_file and the complete
path to the import file will be stored in that column (for each imported row).

WbImport -sourceDir=/data/import
 -header=true
 -schema=staging
 -extension=txt
 -constantValues="source_file=$[_wb_import_file_path]"
 -type=text;

21.4.7. Populating columns from the database

When your input file does not contain the actual values to be stored in the target table, but e.g. lookup values, you can
specify a SELECT statement to retrieve the necessary primary key of the lookup table.

Consider the following tables:

contact (contact_id, first_name, last_name, type_id)
contact_type (type_id, type_name)

The table contact_type contains: (1, 'business'), (2, 'private'), (3, 'other').

Your input file only contains contact_id, first_name, last_name, type_name. Where type_name
references an entry from the contact_type table.

To import this file, the following statement can be used:

WbImport -file=contacts.txt
 -type=text
 -header=true
 -table=contact
 -importColumns=contact_id, first_name, last_name
 -constantValues="type_id=$@{SELECT type_id FROM contact_type WHERE type_name = $4}"

For every row from the input file, SQL Workbench/J will run the specified SELECT statement. The value of the first
column of the first row that is returned by the SELECT, will then be used to populate the type_id column. The
SELECT statement will use the value of the third column of the row that is currently being inserted as the value for the
WHERE condition.

You must use the -importColumns parameter as well to make sure the type_name column is not processed! As an
alternative you can also use -fileColumns=contact_id, first_name, last_name, wb_skip
instead of -importColumns.

The "placeholders" with the column index must not be quoted (e.g. '$1' for a character column will not
work)!

If the column contact_id should be populated by a sequence, the above statement can be extended to include a
function call to retrieve the sequence value (PostgreSQL syntax:)

SQL Workbench/J User's Manual

117

WbImport
 -file=contacts.txt
 -type=text
 -header=true
 -table=contact
 -importColumns=first_name, last_name
 -constantValues="id=${nextval('contact_id_seq'::regclass)}"
 -constantValues="type_id=$@{SELECT type_id FROM contact_type WHERE type_name = $4}"

As the ID column is now populated through a constant expression, it may not appear in the -importColumns list.
Again you could alternatively use -fileColumns=wb_skip, first_name, last_name, wb_skip
to make sure the columns that are populated through the -constantValue parameter are not taken from the input file.

21.5. Parameters for the type XML

The XML import only works with files generated by the WbExport command.

Parameter Description

-verboseXML Possible values: true, false

If the XML was generated with -verboseXML=false then this needs to be specified
also when importing the file. Beginning with build 78, the SQL Workbench/J writes the
information about the used tags into the meta information. So it is no longer necessary to
specify whether -verboseXML was true when creating the XML file.

-sourceDir Specify a directory which contains the XML files. All files in that directory ending with
".xml" (lowercase!) will be processed. The table into which the data is imported is read
from the XML file, also the columns to be imported. The parameters -keycolumns, -
table and -file are ignored if this parameter is specified. If XML files are used that
are generated with a version prior to build 78, then all files need to use either the long
or short tag format and the -verboseXML=false parameter has to be specified if the
short format was used.

When importing several files at once, the files will be imported into the tables specified
in the XML files. You cannot specify a different table (apart from editing the XML file
before starting the import).

-importColumns Defines the columns that should be imported. If all columns from the input file should be
imported (the default), then this parameter can be omited. When specified, the columns
have to match the column names available in the XML file.

-createTarget If this parameter is set to true the target table will be created, if it doesn't exist. Valid
values are true or false.

21.6. Parameters for spreadsheet import

Both spreadsheet imports (Microsoft Excel, OpenOffice) support a subset of the parameters that are used for flat file
imports.

These parameters are:

• -header

• -fileColumns

SQL Workbench/J User's Manual

118

• -importColumns

• -nullString

• -emptyStringIsNull

• -illegalDateIsNull

The spreadsheet import does not support specifying a date or timestamp format. It is expected that those columns are
formatted in such a way that they can be identified as date or timestamps.

The spreadsheet import also does not support importing BLOB files that are referenced from within the spreadsheet. If
you want to import this kind of data, you need to convert the spreadsheet into a text file.

The spreadsheet import supports one additional parameter that is not available for the text imports:

Parameter Description

-sheetNumber Selects the spread sheet inside the file to be imported. If this is not specified the first sheet
is used. The first sheet has the number 1.

All sheets can be imported with a single command when using -sheetNumber=*. In
that case it is assumed that each sheet has the same name as the target table.

If all sheets are imported, the parameters -table, -fileColumns and -
importColumns are ignored.

-sheetName Defines the name of the spreedsheet inside the file to be imported. If this is not specified
the first sheet is used.

-stringDates Possible values: true, false

By default WbImport tries to read "native" date and timestamp values from an Excel
Worksheet. When this parameter is set to true, the values for date and timestamp
values will be retrieved as a (formatted) string value and then converted using the format
specified through the -timestampFormat and -dateFormat parameters.

21.7. Update mode

The -mode parameter controls the way the data is sent to the database. The default is INSERT. SQL Workbench/J will
generate an INSERT statement for each record. If the INSERT fails no further processing takes place for that record.

If -mode is set to UPDATE, SQL Workbench/J will generate an UPDATE statement for each row. In order for this to
work, the table needs to have a primary key defined, and all columns of the primary key need to be present in the import
file. Otherwise the generated UPDATE statement will modify rows that should not be modified. This can be used to
update existing data in the database based on the data from the export file.

To either update or insert data into the table, both keywords can be specified for the -mode parameter. The order in
which they appear as the parameter value, defines the order in which the respective statements are sent to the database.
If the first statement fails, the second will be executed. For -mode=insert,update to work properly a primary or
unique key has to be defined on the table. SQL Workbench/J will catch any exception (=error) when inserting a record,
then it will try updating the record, based on the specified key columns. The -mode=update,insert works the
other way. First SQL Workbench/J will try to update the record based on the primary keys. If the DBMS signals that
no rows have been updated, it is assumed that the row does not exist and the record will be inserted into the table. This
mode is recommended when no primary or unique key is defined on the table, and an INSERT would always succeed.

The keycolumns defined with the -keycolumns parameter don't have to match the real primary key, but they should
identify one row uniquely.

SQL Workbench/J User's Manual

119

You cannot use the update mode, if the tables in question only consist of key columns (or if only key columns are
specified). The values from the source are used to build up the WHERE clause for the UPDATE statement.

If you specify a combined mode (e.g.: update,insert) and one of the tables involved consists only of key columns,
the import will revert to insert mode. In this case database errors during an INSERT are not considered as real errors
and are silently ignored.

For maximum performance, choose the update strategy that will result in a succssful first statement more often. As a
rule of thumb:

• Use -mode=insert,update, if you expect more rows to be inserted then updated.

• Use -mode=update,insert, if you expect more rows to be updated then inserted.

To use insert/update or update/insert with PostgreSQL, make sure you have enabled savepoints for the import (which is
enabled by default).

21.8. Native UPSERT mode

When using a DBMS that supports an "update or insert" functionality directly, this can be selected using -
mode=upsert. In this case SQL Workbench/J will only use a single statement instead of two statements as described
in the previous chapter. The advantage of using this mode over e.g. insert,update is that fewer statements are sent
to the database, and that this mode supports the use of batching, which is not possible when using insert,update.

For the following database systems, native UPSERT is available:

• PostgreSQL 9.5, using INSERT ... ON CONFLICT: http://www.postgresql.org/docs/9.5/static/sql-insert.html

• Firebird 2.1, using UPDATE OR INSERT: http://www.firebirdfaq.org/faq220/

• H2 Database, using MERGE INTO: http://www.h2database.com/html/grammar.html#merge

• Oracle, Microsoft SQL Server, HSQLDB 2.x and DB2 (LUW and z/OS) using a MERGE statement

• SQL Anyhwere using INSERT ... ON EXISTING UPDATE (this requires a primary key)

• SQLite using INSERT OR REPLACE ... (this requires a primary key)

• SAP HANA using a UPSERT statement

• MySQL using INSERT ... ON DUPLICATE: http://dev.mysql.com/doc/refman/5.1/en/insert-on-duplicate.html
As MySQL does not allow to specify the key columns for the "ON DUPLICATE" part, this is only supported when
the table has a primary key.

21.9. Native insertIgnore mode

The -mode=insertIgnore will use the built in feature of the DBMS to (silently) ignore inserts that would result
in a violation of a unique key constraint but not update existing rows. Using -mode=insertIgnore has the same
effect as using -mode=insert -continueOnError=true but will perform better (especially when many
collisions are expected) because this can be combined with batching and it does not require the use of savepoints (e.g.
for Postgres)

This mode is supported for the following DBMS:

• PostgreSQL 9.5, using INSERT ... ON CONFLICT: http://www.postgresql.org/docs/9.5/static/sql-insert.html

http://www.postgresql.org/docs/9.5/static/sql-insert.html
http://www.firebirdfaq.org/faq220/
http://www.h2database.com/html/grammar.html#merge
http://dev.mysql.com/doc/refman/5.1/en/insert-on-duplicate.html
http://www.postgresql.org/docs/9.5/static/sql-insert.html

SQL Workbench/J User's Manual

120

• Oracle, using the IGNORE_ROW_ON_DUPKEY_INDEX hint: https://docs.oracle.com/cd/E11882_01/server.112/
e41084/sql_elements006.htm#CHDEGDDG

• Microsoft SQL Server, HSQLDB 2.x and DB2 (LUW and z/OS) using a MERGE statement without a WHEN NOT
MATCHED clause.

• SQLite using INSERT OR IGNORE ... (this requires a primary key)

• SQL Anyhwere using INSERT ... ON EXISTING SKIP (this requires a primary key)

• MySQL using INSERT ... ON DUPLICATE: http://dev.mysql.com/doc/refman/5.1/en/insert-on-duplicate.html
with a dummy update setting one column to its current value. As MySQL does not allow to specify the key columns
for the "ON DUPLICATE" part, this is only supported when the table has a primary key.

https://docs.oracle.com/cd/E11882_01/server.112/e41084/sql_elements006.htm#CHDEGDDG
https://docs.oracle.com/cd/E11882_01/server.112/e41084/sql_elements006.htm#CHDEGDDG
http://dev.mysql.com/doc/refman/5.1/en/insert-on-duplicate.html

SQL Workbench/J User's Manual

121

22. Copy data across databases
The WbCopy is essentially the command line version of the the DataPumper. For a more detailed explanation of the
copy process, please refer to that section. It basically chains a WbExport and a WbImport statement without the need
of an intermediate data file. The WbCopy command requires that a connection to the source and target database can be
made at the same time from the computer running SQL Workbench/J

Some JDBC drivers (e.g. PostgreSQL, jTDS and the Microsoft Driver) read the full result obtained from
the database into memory. In that case, copying large results might require a lot of memory. Please refer
to the chapter Common problems for details on how to configure the individual drivers if this happens to
you.

22.1. General parameters for the WbCopy command.

Parameter Description

-sourceProfile The name of the connection profile to use as the source connection. If -sourceprofile is not
specified, the current connection is used as the source.

If the profile name contains spaces or dashes, it has to be quoted.

This parameter supports auto-completion

-sourceGroup If the name of your source profile is not unique across all profiles, you will need to specify
the group in which the profile is located with this parameter.

If the group name contains spaces or dashes, it has to be quoted.

-sourceConnection Allows to specify a full connection definition as a single parameter (and thus does not
require a pre-defined connection profile).

The connection is specified with a comma separated list of key value pairs:

• username - the username for the connection

• password - the password for the connection

• url - the JDBC URL

• driver - the class name for the JDBC driver. If this is not specified, SQL Workbench/
J will try to determine the driver from the JDBC URL

• driverJar - the full path to the JDBC driver. This not required if a driver for the
specified class is already configured

e.g.: "username=foo,password=bar,url=jdbc:postgresql://
localhost/mydb"

For a sample connection string please see the documentation for WbConnect.

If this parmeter is specified, -sourceProfile is ignored

-targetProfile The name of the connection profile to use as the target connection. If -targetProfile
is not specified, the current connection is used as the target.

If the profile name contains spaces or dashes, it has to be quoted.

This parameter supports auto-completion

-targetGroup If the name of your target profile is not unique across all profiles, you will need to specify
the group in which the profile is located with this parameter.

SQL Workbench/J User's Manual

122

Parameter Description

If the group name contains spaces or dashes, it has to be quoted.

-targetConnection Allows to specify a full connection definition as a single parameter (and thus does not
require a pre-defined connection profile).

The connection is specified with a comma separated list of key value pairs:

• username - the username for the connection

• password - the password for the connection

• url - the JDBC URL

• driver - the class name for the JDBC driver. If this is not specified, SQL Workbench/
J will try to determine the driver from the JDBC URL

• driverJar - the full path to the JDBC driver. This not required if a driver for the
specified class is already configured

e.g.: "username=foo,password=bar,url=jdbc:postgresql://
localhost/mydb"

If this parmeter is specified, -sourceProfile is ignored

-commitEvery The number of rows after which a commit is sent to the target database. This parameter is
ignored if JDBC batching (-batchSize) is used.

-deleteTarget Possible values: true, false

If this parameter is set to true, all rows are deleted from the target table using a DELETE
statement before copying the data.

-truncateTable Possible values: true, false

If this parameter is set to true, all rows are remove from the target table using a
TRUNCATE statement before copying the data.

Not all DBMS support the TRUNCATE command. If this option is used for a DBMS that
does not support TRUNCATE or where the target table(s) cannot be truncated due to other
restrictions, an error will occur.

-mode Defines how the data should be sent to the database. Possible values are INSERT,
UPDATE, 'INSERT,UPDATE' and 'UPDATE,INSERT'. Please refer to the description of
the WbImport command for details on.

-syncDelete If this option is enabled -syncDelete=true, SQL Workbench/J will check each
row from the target table if it's present in the source table. Rows in the target table that
are not present in the source will be deleted. As this is implemented by checking each
row individually in the source table, this can take some time for large tables. This option
requires that each table in question has a primary key defined.

Combined with an UPDATE,INSERT or UPDATE,INSERT mode this creates an exact
copy of the source table.

If more than one table is copied, the delete process is started after all inserts and updates
have been processed. It is recommended to use the -checkDependencies parameter
to make sure the deletes are processed in the correct order (which is most probably already
needed to process inserts correctly).

SQL Workbench/J User's Manual

123

Parameter Description

To only generate the SQL statements that would synchronize two databases, you can use
the command WbDataDiff

-keyColumns Defines the key columns for the target table. This parameter is only necessary if import is
running in UPDATE mode. It is ignored when specifying more than one table with the -
sourceTable argument. In that case each table must have a primary key.

It is assumed that the values for the key columns will never be NULL.

-ignoreIdentityColumns Possible values: true, false

Controls if identity or auto-increment columns will be included in the import.

If this is used, the JDBC driver (of the target database) must correctly report the column to
be excluded as an AUTOINCREMENT column. This can be verified in the table definition
display of the DbExplorer. If the column is reported with YES for the AUTOINCREMENT
property, then this column will be excluded during the import.

-batchSize Enable the use of the JDBC batch update feature, by setting the size of the batch queue.
Any value greater than 1 will enable batch modee. If the JDBC driver supports this, the
INSERT (or UPDATE) performance can be increased.

This parameter will be ignored if the driver does not support batch updates or if
the mode is not UPDATE or INSERT (i.e. if -mode=update,insert or -
mode=insert,update is used).

-commitBatch Valid values: true, false

When using the -batchSize parameter, the -commitEvery is ignored (as not
all JDBC drivers support a COMMIT inside a JDBC batch operation. When using -
commitBatch=true SQL Workbench/J will send a COMMIT to the database server
after each JDBC batch is sent to the server.

-continueOnError Defines the behaviour if an error occurs in one of the statements. If this is set to true the
copy process will continue even if one statement fails. If set to false the copy process
will be halted on the first error. The default value is false.

With PostgreSQL continueOnError will only work, if the use of savepoints is
enabled using -useSavepoint=true.

-useSavepoint Possible values: true, false

Controls if SQL Workbench/J guards every insert or update statement with a savepoint to
recover from individual error during import, when continueOnError is set to true.

Using a savepoint for each DML statement can drastically reduce the performance of the
import.

-trimCharData Possible values: true, false

If this parameter is set to true, values from CHAR columns will be trimmed from trailing
whitespace. This is equivalent to the Trim CHAR data in the connection profile.

-showProgress Valid values: true, false, <numeric value>

Control the update frequence in the status bar (when running in GUI mode). The default
is every 10th row is reported. To disable the display of the progress specify a value of 0
(zero) or the value false. true will set the progress interval to 1 (one).

SQL Workbench/J User's Manual

124

22.2. Copying data from one or more tables

Parameter Description

-sourceSchema The name of the schema to be copied. When using this parameter, all tables from the
specified schema are copied to the target. You must specify either -sourceSchema, -
sourceTable or -sourceQuery

-sourceTable The name of the table(s) to be copied. You can either specifiy a list of tables: -
sourceTable=table1,table2. Or select the tables using a wildcard: -
sourceTable=* will copy all tables accessible to the user. If more than one table is
specified using this parameter, the -targetTable parameter is ignored.

-excludeTables The tables listed in this parameter will not be copied. This can be used when all but a few
tables should be copied from one database to another. First all tables specified through
-sourceTable will be evaluated. The tables specified by -excludeTables can
include wildcards in the same way, -sourceTable allows wildcards.

-sourceTable=* -excludeTables=TEMP* will copy all tables, but not those
starting with TEMP.

This parameter supports auto-completion.

-checkDependencies When copying more than one file into tables with foreign key constraints, this
switch can be used to import the files in the correct order (child tables first). When -
checkDependencies=true is passed, SQL Workbench/J will check the foreign key
dependencies for the tables specified with -sourceTable

-targetSchema The name of the target schema into which the tables should be copied. When this
parameter is not specified, the default schema of the target connection is used.

-sourceWhere A WHERE condition that is applied to the source table.

-targetTable The name of the table into which the data should be written. This parameter is ignored if
more than one table is copied.

-createTarget If this parameter is set to true the target table will be created, if it doesn't exist. Valid
values are true or false.

Using -createTarget=true is intended as a quick and dirty way of
creating a target table "on the fly" during the copy process. Tables created
this way should not be considered "production-ready". The created tables
will only have the primary key and not-null constraints created. All other
constraints from the source table are ignored.

Because the automatic mapping of table definitions will only work in
the most simple cases this feature is not suited to synchronize the table
definitions between two different DBMS products.

Because of these limitations this feature can not considered a replacement
for a proper schema management. If you have the requirement to keep the
schema definition of different DBMS in sync please consider a tool like
Liquibase or Flyway. Do not try to use WbCopy for this.

If you want to migrate a table (or several tables) from one DBMS to another,
consider user WbSchemaReport together with an XSLT transformation

When using this option with different source and target DBMS, the information about
the data types to be used in the target database are retrieved from the JDBC driver. In
some cases this information might not be accurate or complete. You can enhance the
information from the driver by configuring your own mappings in workbench.settings.
Please see the section Customizing data type mapping for details.

http://liquibase.org/
http://flywaydb.org/
http://www.sql-workbench.net/xslt.html

SQL Workbench/J User's Manual

125

Parameter Description

If the automatic mapping generates an invalid CREATE TABLE statement, you will need
to create the table manually in the target database.

-removeDefaults Valid values are true or false.

This parameter is only valid in combination with -createTarget=true. If set to
true, any default value (or expression) defined on the source table will be ignored when
creating the target table. This is useful if the source and target DBMS use different syntax
for default values.

-tableType When -createTarget is set to true, this parameter can be used to control the SQL
statement that is generated to create the target table. This is useful if the target table should
e.g. be a temporary table

When using the auto-completion for this parameter, all defined "create types" that are
configured in workbench.settings (or are part of the default settings) are displayed together
with the name of the DBMS they are used for. The list is not limited to definitions for the
target database! The specified type must nonetheless match a type defined for the target
connection. If you specify a type that does not exist, the default CREATE TABLE will be
used.

For details on how to configure a CREATE TABLE template for this parameter, please
refer to the chapter Settings related to SQL statement generation

-skipTargetCheck Normally WbCopy will check if the specified target table does exist. However, some
JDBC drivers do not always return all table information correctly (e.g. temporary tables).
If you know that the target table exists, the parameter -skipTargetCheck=true can
be used to tell WbCopy, that the (column) definition of the source table should be assumed
for the target table and not further test for the target table will be done.

-dropTarget Possible values: false, true, cascade

If this parameter is set to true the target table will be dropped before it is created.

For database systems that support it (Oracle, PostgreSQL), a DROP ... CASCADE is
used when the value cascade is specified. If the DBMS does not support cascading
drops, this is the same as specifying true.

-columns Defines the columns to be copied. If this parameter is not specified, then all matching
columns are copied from source to target. Matching is done on name and data type. You
can either specify a list of columns or a column mapping.

When supplying a list of columns, the data from each column in the source table
will be copied into the corresponding column (i.e. one with the same name) in the
target table. If -createTarget=true is specified then this list also defines the
columns of the target table to be created. The names have to be separated by comma: -
columns=firstname, lastname, zipcode

A column mapping defines which column from the source table maps to which column of
the target table (if the column names do not match) If -createTarget=true then the
target table will be created from the specified target names: -columns=firstname/
surname, lastname/name, zipcode/zip Will copy the column firstname
from the source table to a column named surname in the target table, and so on.

This parameter is ignored if more than one table is copied.

When using a SQL query as the data source a mapping cannot be specified.
Please check Copying data based on a SQL query for details.

SQL Workbench/J User's Manual

126

Parameter Description

-adjustSequences Possible values: true, false

For DBMS that support sequences which are associated with a column, this parameter
can be used to adjust the next value for the sequence to the maximum value of the
imported data. This can also be used to synchronize identity columns for DBMS that allow
overriding the generated values.

Currently this is implemented for PostgreSQL, DB2 (LUW), H2 Database and HyperSQL
(aka HSQLDB).

-preTableStatement -
postTableStatement

This parameter defines a SQL statement that should be executed before the import
process starts inserting data into the target table. The name of the current table (when e.g.
importing a whole directory) can be referenced using ${table.name}.

To define a statement that should be executed after all rows have been inserted and have
been committed, you can use the -postTableStatement parameter.

These parameters can e.g. be used to enable identity insert for MS SQL Server:

-preTableStatement="set identity_insert ${table.name} on"
-postTableStatement="set identity_insert ${table.name} off"

Errors resulting from executing these statements will be ignored. If you want to abort
the import in that case you can specify -ignorePrePostErrors=false and -
continueOnError=false.

These statements are only used if more than one table is processed.

-
runTableStatementOnError

Possible values: true, false

Controls the execution of the post-table statement in case an error occurred
while importing the data. By default the post-table statement is executed
even if the import was not successful. If this is should not happen, use -
runTableStatementOnError=false.

-ignorePrePostErrors Possible values: true, false

Controls handling of errors for the SQL statements defined through the -
preTableStatement and -postTableStatement parameters. If this is set to true
(the default), errors resulting from executing the supplied statements are ignored. If set to
false then error handling depends on the parameter -continueOnError.

22.3. Copying data based on a SQL query

Parameter Description

-sourceQuery The SQL query to be used as the source data (instead of a table).

This parameter is ignored if -sourceSchema or -sourceTable is specified.

-columns The list of columns from the target table, in the order in which they appear in the source
query.

If the column names in the query match the column names in the target table, this
parameter is not necessary.

If you do specify this parameter, note that this is not a column mapping. It only lists the
columns in the correct order .

SQL Workbench/J User's Manual

127

22.4. Update mode

The WbCopy command understands the same update mode parameter as the WbImport command. For a discussion on
the different update modes, please refer to the WbImport command.

22.5. Synchronizing tables

Using -mode=update,insert ensures that all rows that are present in the source table do exist in the target table
and that all values for non-key columns are identical.

When you need to keep two tables completely in sync, rows that are present in the target table that do not exist
in the source table need to be deleted. This is what the parameter -syncDelete is for. If this is enabled (-
syncDelete=true) then SQL Workbench/J will check every row from the target table if it is present in the source
table. This check is based on the primary keys of the target table and assumes that the source table as the same primary
key.

Testing if each row in the target table exists in the source table is a substantial overhead, so you should enable this
option only when really needed. DELETEs in the target table are batched according to the -batchSize setting of the
WbCopy command. To increase performance, you should enable batching for the whole process.

Internally the rows from the source table are checked in chunks, which means that SQL Workbench/J will generate a
SELECT statement that contains a WHERE condition for each row retrieved from the target table. The default chunk size
is relatively small to avoid problems with large SQL statements. This approach was taken to minimize the number of
statements sent to the server.

The automatic fallback [119] from update,insert or insert,update mode to insert mode applies for
synchronizing tables using WbCopy as well.

22.6. Examples

22.6.1. Copy one table to another where all column names match

WbCopy -sourceProfile=ProfileA
 -targetProfile=ProfileB
 -sourceTable=the_table
 -targetTable=the_other_table;

22.6.2. Synchronize the tables between two databases

This example will copy the data from the tables in the source database to the corresponding tables in the target database.
Rows that are not available in the source tables are deleted from the target tables.

WbCopy -sourceProfile=ProfileA
 -targetProfile=ProfileB
 -sourceTable=*
 -mode=update,insert
 -syncDelete=true;

22.6.3. Copy only selected rows

WbCopy -sourceProfile=ProfileA

SQL Workbench/J User's Manual

128

 -targetProfile=ProfileB
 -sourceTable=the_table
 -sourceWhere="lastname LIKE 'D%'"
 -targetTable=the_other_table;

This example will run the statement SELECT * FROM the_table WHERE lastname like 'D%' and copy
all corresponding columns to the target table the_other_table.

22.6.4. Copy data between tables with different columns

This example copies only selected columns from the source table. The column names in the two tables do not match and
a column mapping is defined. Before the copy is started all rows are deleted from the target table.

WbCopy -sourceProfile=ProfileA
 -targetProfile=ProfileB
 -sourceTable=person
 -targetTable=contacts
 -deleteTarget=true
 -columns=firstname/surname, lastname/name, birthday/dob;

22.6.5. Copy data based on a SQL query

When using a query as the source for the WbCopy command, the column mapping is specified by simply supplying the
order of the target columns as they appear in the SELECT statement.

WbCopy -sourceProfile=ProfileA
 -targetProfile=ProfileB
 -sourceQuery="SELECT firstname, lastname, birthday FROM person"
 -targetTable=contacts
 -deleteTarget=true
 -columns=surname, name, dob;

This copies the data based on the SELECT statement into the table CONTACTS of the target database. The -columns
parameter defines that the first column of the SELECT (firstname) is copied into the target column with the name
surname, the second result column (lastname) is copied into the target column name and the last source column
(birthday) is copied into the target column dob.

This example could also be written as:

WbCopy -sourceProfile=ProfileA
 -targetProfile=ProfileB
 -sourceQuery="SELECT firstname as surname, lastname as name, birthday as dob FROM person"
 -targetTable=contacts
 -deleteTarget=true

SQL Workbench/J User's Manual

129

23. Comparing databases
All SQL Workbench/J specific command can only be used from within SQL Workbench/J

There are two SQL Workbench/J specific commands that can compare either the structure of two databases or the data
contained in them.

These commands (WbSchemaDiff and WbDataDiff) can be used like any other SQL command as long as they are
run using SQL Workbench/J This includes the usage in scripts that are run in batch mode.

23.1. Compare two database schemas - WbSchemaDiff

WbSchemaDiff analyzes two schemas (or a list of tables) and outputs the differences between those schemas as an
XML file. The XML file describes the changes that need to be applied to the target schema to have the same structure as
the reference schema, e.g. modify column definitions, remove or add tables, remove or add indexes.

The output is intended to be transformed using XSLT (e.g. with the WbXSLT Command). Sample XSLT
transformations are stored in the xslt subdirectory of the SQL Workbench/J installation directory. All scripts that are
part of the download can also be found on the SQL Workbench/J homepage

This feature should only be considered as a one-off solution to quickly compare two database schemas. Is
not intended to replace a proper schema (script) management. You should consider tools like Liquibase
or Flyway to manage a database schema. Those scripts should also be stored in a version control system
(Subversion, Git, ...)

The command supports the following parameters:

Parameter Description

-referenceProfile The name of the connection profile for the reference connection. If this is not specified,
then the current connection is used.

-referenceGroup If the name of your reference profile is not unique across all profiles, you will need to
specify the group in which the profile is located with this parameter.

-referenceConnection Allows to specify a full connection definition as a single parameter (and thus does not
require a pre-defined connection profile).

The connection is specified with a comma separated list of key value pairs:

• username - the username for the connection

• password - the password for the connection

• url - the JDBC URL

• driver - the class name for the JDBC driver. If this is not specified, SQL Workbench/
J will try to determine the driver from the JDBC URL

• driverJar - the full path to the JDBC driver. This not required if a driver for the
specified class is already configured

e.g.: "username=foo,password=bar,url=jdbc:postgresql://
localhost/mydb"

For a sample connection string please see the documentation for WbCopy.

If this parameter is specified -referenceProfile will be ignored.

http://www.sql-workbench.net/xslt.html
http://liquibase.org/
http://flywaydb.org/

SQL Workbench/J User's Manual

130

Parameter Description

-targetProfile The name of the connection profile for the target connection (the one that needs to be
migrated). If this is not specified, then the current connection is used.

If you use the current connection for reference and target, then you should prefix the
table names with schema/user or use the -referenceschema and -targetschema
parameters.

-targetGroup If the name of your target profile is not unique across all profiles, you will need to specify
the group in which the profile is located with this parameter.

-targetConnection Allows to specify a full connection definition as a single parameter (and thus does not
require a pre-defined connection profile).

The connection is specified with a comma separated list of key value pairs:

• username - the username for the connection

• password - the password for the connection

• url - the JDBC URL

• driver - the class name for the JDBC driver. If this is not specified, SQL Workbench/
J will try to determine the driver from the JDBC URL

• driverJar - the full path to the JDBC driver. This not required if a driver for the
specified class is already configured

e.g.: "username=foo,password=bar,url=jdbc:postgresql://
localhost/mydb"

For a sample connection string please see the documentation for WbConnect.

If this parameter is specified -targetProfile will be ignored.

-file The filename of the output file. If this is not supplied the output will be written to the
message area

-referenceTables A (comma separated) list of tables that are the reference tables, to be checked.

-targetTables A (comma separated) list of tables in the target connection to be compared to the source
tables. The tables are "matched" by their position in the list. The first table in the -
referenceTables parameter is compared to the first table in the -targetTables
parameter, and so on. Using this parameter you can compare tables that do not have the
same name.

If you omit this parameter, then all tables from the target connection with the same names
as those listed in -referenceTables are compared.

If you omit both parameters, then all tables that the user can access are retrieved from the
source connection and compared to the tables with the same name in the target connection.

-referenceSchema Compare all tables from the specified schema (user)

-targetSchema A schema in the target connection to be compared to the tables from the reference schema.

-excludeTables A comma separated list of tables that should not be compared. If tables from
several schemas are compared (using -referenceTables=schema_one.*,
schema_two.*) then the listed tables must be qualified with a schema, e.g. -
excludeTables=schema_one.foobar, schema_two.fubar

-encoding The encoding to be used for the XML file. The default is UTF-8

SQL Workbench/J User's Manual

131

Parameter Description

-includePrimaryKeys Select whether primary key constraint definitions should be compared as well. The default
is true. Valid values are true or false.

-includeForeignKeys Select whether foreign key constraint definitions should be compared as well. The default
is true. Valid values are true or false.

-includeTableGrants Select whether table grants should be compared as well. The default is false.

-includeTriggers Select whether table triggers are compared as well. The default value is true.

-includeConstraints Select whether table and column (check) constraints should be compared as well. SQL
Workbench/J compares the constraint definition (SQL) as stored in the database.

The default is to compare table constraints (true) Valid values are true or false.

-useConstraintNames When including check constraints this parameter controls whether constraints should be
matched by name, or only by their expression. If comparing by names the diff output will
contain elements for constraint modification otherwise only drop and add entries will be
available.

The default is to compare by names(true) Valid values are true or false.

-includeViews Select whether views should also be compared.

Note that this comparison is very unreliable, because this compares the source code, not
the logical representation of the view definition.

The source code is compared the way it is returned by the DBMS is compared. This
comparison is case-sensitiv, which means SELECT * FROM foo; will be reported as a
difference to select * from foo; even if they are logically the same. Aslo different
indention or empty lines will result in the views being reported as "different".

A comparison across different DBMS will not work.

The default is true Valid values are true or false.

-includeProcedures Select whether stored procedures should also be compared. When comparing procedures
the source as it is stored in the DBMS is compared. This comparison is case-sensitive. A
comparison across different DBMS will also not work!

The default is false Valid values are true or false.

-includeIndex Select whether indexes should be compared as well. The default is to not compare index
definitions. Valid values are true or false.

-includeSequences Select whether sequences should be compared as well. The default is to not compare
sequences. Valid values are true, false.

-useJdbcTypes Define whether to compare the DBMS specific data types, or the JDBC data type returned
by the driver. When comparing tables from two different DBMS it is recommended
to use -useJdbcType=true as this will make the comparison a bit more DBMS-
independent. When comparing e.g. Oracle vs. PostgreSQL a column defined as
VARCHAR2(100) in Oracle would be reported as being different to a VARCHAR(100)
column in PostgreSQL which is not really true As both drivers report the column
as java.sql.Types.VARCHAR, they would be considered as identical when using -
useJdbcType=true.

Valid values are true or false.

-additionalTypes Select additional object types that are not compared by default (using the -includeXXX
parameters) such as Oracle TYPE definitions. Those objects are compared on source code
level (like procedures) rather than on attribute level.

SQL Workbench/J User's Manual

132

Parameter Description

Valid values are object type names as shown in the "Type" drop down in the DbExplorer.

-xsltParameter A list of parameters (key/value pairs) that should be passed to the XSLT processor.
When using e.g. the wbreport2liquibase.xslt stylesheet, the value of the
author attribute can be set using -xsltParameter="authorName=42".
This parameter can be provided multiple times for multiple parameters, e.g. when
using wbreport2pg.xslt: -xsltParameter="makeLowerCase=42" -
xsltParameter="useJdbcTypes=true"

WbSchemaDiff Examples

Compare all tables between two connections, and write the output to the file migrate_prod.xml and convert the
XML to a series of SQL statements for PostgreSQL

WbSchemaDiff -referenceProfile="Staging"
 -targetProfile="Production"
 -file=migrate_prod.xml
 -styleSheet=wbdiff2pg.xslt
 -xsltOutput=migrate_prod.sql

Compare a list of matching tables between two databases and write the output to the file migrate_staging.xml
ignoring all tables that start with TMP_ and exclude any index definition from the comparison. Convert the output to a
SQL script for Oracle

WbSchemaDiff -referenceProfile="Development"
 -targetProfile="Staging"
 -file=migrate_stage.xml
 -excludeTables=TMP_*
 -includeIndex=false
 -styleSheet=wbdiff2oracle.xslt
 -xsltOutput=migrate_stage.sql

23.2. Compare data across databases - WbDataDiff

The WbDataDiff command can be used to generate SQL scripts that update a target database such that the data is
identical to a reference database. This is similar to the WbSchemaDiff but compares the actual data in the tables
rather than the table structure.

For each table the command will create up to three script files, depending on the needed statements to migrate the
data. One file for UPDATE statements, one file for INSERT statements and one file for DELETE statements (if -
includeDelete=true is specified)

As this command needs to read every row from the reference and the target table, processing large tables
can take quite some time, especially if DELETE statements should also be generated.

WbDataDiff requires that all involved tables have a primary key defined. If a table does not have a primary key,
WbDataDiff will stop the processing.

SQL Workbench/J User's Manual

133

To improve performance (a bit), the rows are retrieved in chunks from the target table by dynamically constructing
a WHERE clause for the rows that were retrieved from the reference table. The chunk size can be controlled using
the property workbench.sql.sync.chunksize The chunk size defaults to 25. This is a conservative setting to
avoid problems with long SQL statements when processing tables that have a PK with multiple columns. If you know
that your primary keys consist only of a single column and the values won't be too long, you can increase the chunk
size, possibly increasing the performance when generating the SQL statements. As most DBMS have a limit on the
length of a single SQL statement, be careful when setting the chunksize too high. The same chunk size is applied when
generating DELETE statements by the WbCopy command, when syncDelete mode is enabled.

The command supports the following parameters:

Parameter Description

-referenceProfile The name of the connection profile for the reference connection. If this is not specified,
then the current connection is used.

-referenceGroup If the name of your reference profile is not unique across all profiles, you will need to
specify the group in which the profile is located with this parameter. If the profile's name
is unique you can omit this parameter

-referenceConnection Allows to specify a full connection definition as a single parameter (and thus does not
require a pre-defined connection profile).

The connection is specified with a comma separated list of key value pairs:

• username - the username for the connection

• password - the password for the connection

• url - the JDBC URL

• driver - the class name for the JDBC driver. If this is not specified, SQL Workbench/
J will try to determine the driver from the JDBC URL

• driverJar - the full path to the JDBC driver. This not required if a driver for the
specified class is already configured

e.g.: "username=foo,password=bar,url=jdbc:postgresql://
localhost/mydb"

For a sample connection string please see the documentation for WbCopy.

If this parameter is specified -referenceProfile will be ignored.

-targetProfile The name of the connection profile for the target connection (the one that needs to be
migrated). If this is not specified, then the current connection is used.

If you use the current connection for reference and target, then you should prefix the
table names with schema/user or use the -referenceschema and -targetschema
parameters.

-targetGroup If the name of your target profile is not unique across all profiles, you will need to specify
the group in which the profile is located with this parameter.

-targetConnection Allows to specify a full connection definition as a single parameter (and thus does not
require a pre-defined connection profile).

The connection is specified with a comma separated list of key value pairs:

• username - the username for the connection

• password - the password for the connection

SQL Workbench/J User's Manual

134

Parameter Description

• url - the JDBC URL

• driver - the class name for the JDBC driver. If this is not specified, SQL Workbench/
J will try to determine the driver from the JDBC URL

• driverJar - the full path to the JDBC driver. This not required if a driver for the
specified class is already configured

e.g.: "username=foo,password=bar,url=jdbc:postgresql://
localhost/mydb"

For a sample connection string please see the documentation for WbConnect.

If this parameter is specified -targetProfile will be ignored.

-file The filename of the main script file. The command creates two scripts per table. One
script named update_<tablename>.sql that contains all needed UPDATE or
INSERT statements. The second script is named delete_<tablename>.sql
and will contain all DELETE statements for the target table. The main script merely
calls (using WbInclude) the generated scripts for each table. You can enable writing
a single file that includes all statements for all tables by using the parameter -
singleFile=true

-singleFile If this parameter's value is true, then only one single file containing all statements will
be written.

-referenceTables A (comma separated) list of tables that are the reference tables, to be checked. You can
specify the table with wildcards, e.g. -referenceTables=P% to compare all tables
that start with the letter P.

-targetTables A (comma separated) list of tables in the target connection to be compared to the source
tables. The tables are "matched" by their position in the list. The first table in the -
referenceTables parameter is compared to the first table in the -targetTables
parameter, and so on. Using this parameter you can compare tables that do not have the
same name.

If you omit this parameter, then all tables from the target connection with the same names
as those listed in -referenceTables are compared.

If you omit both parameters, then all tables that the user can access are retrieved from the
source connection and compared to the tables with the same name in the target connection.

-referenceSchema Compare all tables from the specified schema (user)

-targetSchema A schema in the target connection to be compared to the tables from the reference schema.

-excludeTables A comma separated list of tables that should not be compared. If tables from
several schemas are compared (using -referenceTables=schema_one.*,
schema_two.*) then the listed tables must be qualified with a schema, e.g. -
excludeTables=schema_one.foobar, schema_two.fubar

-checkDependencies Valid values are true, false.

Sorts the generated scripts in order to respect foreign key dependencies for deleting and
inserting rows.

The default is true.

-includeDelete Valid values are true, false.

SQL Workbench/J User's Manual

135

Parameter Description

Generates DELETE statements for rows that are present in the target table, but not in the
reference table. Note that enabling this option will result in additional overhead reading
the target table's data and will slow down the overal comparison speed.

The default is false.

-type Valid values are sql, xml

Defines the type of the generated files.

-encoding The encoding to be used for the SQL scripts. The default depends on your operating
system. It will be displayed when you run WbDataDiff without any parameters. You
can overwrite the platform default with the property workbench.encoding in the file
workbench.settings

XML files are always stored in UTF-8

-sqlDateLiterals Valid values: jdbc, ansi, dbms, default

Controls the format in which the values of DATE, TIME and TIMESTAMP columns
are written into the generated SQL statements. For a detailed description of the possible
values, please refer to the WbExport command.

-ignoreColumns With this parameter you can define a list of column names that should not be considered
when comparing data. You can e.g. exclude columns that store the last access time of a
row, or the last update time if that should not be taken into account when checking for
changes.

They will however be part of generated INSERT or UPDATE statements unless -
exclueIgnored=true is also specified.

-excludeIgnored Valid values: true, false

If this is set to true, the ignored columns will also be removed from any INSERT or
UPDATE statement

The default is false.

-alternateKey With this parameter alternate keys can be defined for the tables that are compared.
The parameter can be repeated multiple times to set the keys for multiple tables in the
following format: -alternateKey='table_1=column_1,column_2'

Note that each value has to be enclosed in either single or double quotes to mask the
equals sign embedded in the parameter value.

Once an alternate (primary) key has been defined, the primary key columns defined on the
tables are ignored. By default the real PK columns will however be included in INSERT
statement that are generated. To avoid this, set the parameter -excludeRealPK to true.

-excludeRealPK Valid values are true, false.

This parameter controls the usage of the real PK columns in case alternate PK columns
are defined. If set to true the real PK columns are excluded from generated INSERT
statements (assuming that a new PK value will be generated during inserting the rows).

Note that this parameter will enable/disable the use of the real PK columns for all tables
for which alternate key columns were defined.

This parameter has no effect if no alternate keys were specified using the -
alternateKey option.

SQL Workbench/J User's Manual

136

Parameter Description

-showProgress Valid values: true, false, <numeric value>

Control the update frequence in the status bar (when running in GUI mode). The default
is every 10th row is reported. To disable the display of the progress specify a value of 0
(zero) or the value false. true will set the progress interval to 1 (one).

WbDataDiff Examples

Compare all tables between two connections, and write the output to the file migrate_staging.sql, but do not
generate DELETE statements.

WbDataDiff -referenceProfile="Production"
 -targetProfile="Staging"
 -file=migrate_staging.sql
 -includeDelete=false

Compare a list of matching tables between two databases and write the output to the file migrate_staging.sql
including DELETE statements.

WbDataDiff -referenceProfile="Production"
 -targetProfile="Staging"
 -referenceTables=person,address,person_address
 -file=migrate_staging.sql
 -includeDelete=true

Compare three tables that are differently named in the target database and ignore all columns (regardless in which table
they appear) that are named LAST_ACCESS or LAST_UPDATE

WbDataDiff -referenceProfile="Production"
 -targetProfile="Staging"
 -referenceTables=person,address,person_address
 -targetTables=t_person,t_address,t_person_address
 -ignoreColumns=last_access,last_update
 -file=migrate_staging.sql
 -includeDelete=true

SQL Workbench/J User's Manual

137

24. Search data and code in the database
All SQL Workbench/J specific command can only be used from within SQL Workbench/J

24.1. Search source of database objects - WbGrepSource

The command WbGrepSource can be used to search in the source code of the specified database objects.

The command basically retrieves the source code for all selected objects and does a simple search on that source code.
The source code that is searched is identical to the source code that is displayed in the "Source" tab in the various
DbExplorer panels.

The search values can be regular expressions. When searching the source code the specified expression must be found
somewhere in the source. The regex is not used to match the entire source.

The command supports the following parameters:

Parameter Description

-searchValues A comma separated list of values to be searched for.

-useRegex Valid values are true, false.

If this parameter is set to true, the values specified with -searchValues are treated as
regular expression

The default for this parameter is false.

-matchAll Valid values are true, false.

This specifies if all values specified with -searchValues have to match or only one.

The default for this parameter is false.

-ignoreCase Valid values are true, false.

When set to true, the comparison is be done case-insesitive ("ARTHUR" will match
"Arthur" or "arthur").

The default for this parameter is true.

-types Specifies if the object types to be searched. The values for this parameter are the same as
in the "Type" drop down of DbExplorer's table list. Additionally the types function,
procedure and trigger are supported.

When specifying a type that contains a space, the type name neeeds to be enclosed in
quotes, e.g. -types="materialized view". When specifying multiple types, the
whole argument needs to be enclosed in quotes: -types='table, materialized
view'

The default for this parameter is view, procedure, function, trigger,
materialized view. To search in all available object types, use -types=*.

This parameter supports auto-completion.

-objects A list of object names to be searched. These names may contain SQL wildcards, e.g. -
objects=PER%,NO%

SQL Workbench/J User's Manual

138

Parameter Description

This parameter supports auto-completion.

-schemas Specifies a list of schemas to be searched (for DBMS that support schemas). If this
parameter is not specified the current schema is searched.

This parameter supports auto-completion.

The functionality of the WbGrepSource command is also available through a GUI at Tools » Search in object source

24.2. Search data in multiple tables - WbGrepData

The command WbGrepData can be used to search for occurrences of a certain value in all columns of multiple tables.
It is the command line version of the (client side) Search Table Data tab in the DbExplorer. A more detailed description
on how the searching is performed is available that chapter.

To search the data of a table a SELECT * FROM the_table is executed and processed on a row-
by-row basis. Although SQL Workbench/J only keeps one row at a time in memory it is possible that the
JDBC drivers caches the full result set in memory. Please see the chapter Common problems for your
DBMS to check if the JDBC driver you are using caches result sets.

The command supports the following parameters:

Parameter Description

-searchValue The value to be searched for

This parameter is ignored when using isNull for the compare type.

-ignoreCase Valid values are true, false.

When set to true, the comparison is be done case-insensitive ("ARTHUR" will match
"Arthur" or "arthur").

The default for this parameter is true.

-compareType Valid values are contains, equals, matches, startsWith, isNull

When specifying matches, the search value is used as a regular expression. A column is
included in the search result if the regular expression is contained in the column value (not
when the column value completely matches the regular expression entirely).

The default for this parameter is contains.

-tables A list of table names to be searched. These names may contain SQL wildcards, e.g. -
tables=PER%,NO%. If you want to search in different schemas, you need to prefix the
table names, e.g. -tables=schema1.p%,schema2.n%.

This parameter supports auto-completion.

-types By default WbGrepData will search all tables and views (including materialized views).
If you want to search only one of those types, this can be specified with the -types
parameter. Using -types=table will only search table data and skip views in the
database.

This parameter supports auto-completion.

-excludeTables A list of table names to be excluded from the search. If e.g. the wildcard for -tables
would select too many tables, you can exclude individual tables with this parameter. The
parameter values may include SQL wildcards.

SQL Workbench/J User's Manual

139

Parameter Description

-tables=p% -excludeTables=product_details,product_images
would process all tables starting with P but not the product_detail and the
product_images tables.

-retrieveCLOB By default CLOB columns will be retrieved and searched. If this parameter is set to
false, CLOB columns will not be retrieved.

If the search value is not expected in columns of that type, excluding them from the search
will speed up data retrieval (and thus the searching).

Only columns reported as CLOB by the JDBC driver will be excluded. If the driver reports
a column as VARCHAR this parameter will not exclude that column.

-retrieveBLOB By default BLOB columns will not be retrieved for those rows that match the criteria to
avoid excessive memory usage.

If BLOB columns should be retrieved, this parameter needs to be set to true. Enabling
this will not search inside the binary data. If BLOB columns should be searched (and
treated as character data), use the -treatBlobAs parameter

-treatBlobAs If this parameter specifies a valid encoding, binary (aka "BLOB") columns will be
retrieved and converted to a character value using the specified encoding. That character
value is then searched.

-treatBlobAs="UTF-8" would convert all BLOB columns in all tables that are
searched to a character value using UTF-8 as the encoding. Therefore using this option
usually only makes sense if a single table is searched.

24.2.1. Examples

Search for a specific value in a single table

The following statement will search for the text Arthur in all columns and all rows of the table person. It will find
values foobar, somefoo or notfoobar:

WbGrepData -searchValue=foo -tables=person -ignoreCase=true

-ignoreCase=true is the default behavior and can be omitted.

Search for a specific value in all tables

The following statement will search for the text foobar in all columns and all tables.

WbGrepData -searchValue=foobar -tables=*

Search for a specific value at the beginning of a column value

The following statement will search for the text foo in all columns and all tables. It will match the value foobar, but
not barfoo

WbGrepData -searchValue=foo -compareType=startsWith -tables=*

Search for a specific value with an exact match

The following statement will search for the text foo in all columns and all tables. It will only match the value foo or
FOO but not somefoobar

WbGrepData -searchValue=foo -compareType=equals -tables=*

SQL Workbench/J User's Manual

140

Search for patterns

The following statement will search for any value where three characters are followed by two numbers. It will match
foo42, bar12

WbGrepData -searchValue="[a-z]{2}[0-9]{2}" -compareType=contains -tables=person

As the column values are only tested if the regular expression is contained, not if it is an exact match. The above search
will also return foo999.

To get an exact match using the contains type, the regular expression needs to be anchored at the start and the end.
The following will only find only values that start with (exactly) two characters and are followed by (exactly) two
digits.

WbGrepData -searchValue="^[a-z]{2}[0-9]{2}$" -compareType=contains -tables=person

Search for multiple values

The following statement will return rows where any column either contains the value foo or the value bar:

WbGrepData -searchValue="foo|bar" -compareType=contains -tables=person

As the column values are only tested if the regular expression is contained, not if it is an exact match. The above search
will also return foo999.

For more information about regular expressions please visit: Regular-Expressions.info

http://www.regular-expressions.info/

SQL Workbench/J User's Manual

141

25. SQL Workbench/J to generate DDL commands
All SQL Workbench/J specific command can only be used from within SQL Workbench/J

25.1. Generate DROP statement with dependencies - WbGenerateDrop

The command WbGenerateDrop can be used to generate a SQL script for a table that will drop all foreign keys
referencing that table, then a DROP statement for that table and the statements to re-created the foreign keys referencing
that table.

This is useful if you need to re-create a table but don't want to manually delete all referencing foreign keys, especially if
the DBMS does not support a cascading DROP.

This is also available in the DbExplorer's context menu as "Generate DROP script".

The command supports the following parameters.

Parameter Description

-tables A comma separated list of tables, e.g. -tables=customer,invoice. The parameter supports
specifying tables using wildcards -tables=cust%,inv%.

-includeCreate Valid values: true, false

By default WbGenerateDrop will also add the statements to re-create the foreign keys of the
table(s). By specifying -includeCreate=false only the statements to drop the foreign key and
to drop the table(s) will be created.

-
onlyForeignkeys

Valid values: true, false

When using -onlyForeignkeys=true, then only ALTER TABLE statements will be
generate that will drop the foreign keys of all selected tables. No DROP TABLE and no statements
to re-create the foreign keys will be generated. Setting this parameter to true implies -
includeCreate=false.

-sortByType Valid values: true, false

Usually the generated SQL script will be ordered by the type of statements. So first all statements
to drop constraints will be listed, then the drop table statements, then the statements to re-create all
foreign keys. When specifying -sortByType=false, then the script will be ordered by table:
first all statements for the first table, then all statements for the second table and so on.

-outputFile Defines the file into which all statements are written. If multiple tables are selected using the -
tables parameter, all statements will be written into this file.

-outputDir Specifies an output directory into which one script per selected table will be written. The script files
are named drop_XXX.sql, where XXX is the name of the respective table. If this parameter is
used, -outputFile is ignored.

If neither -outputFile nor -outputDir is specified, the output is written to the message panel.

25.2. Generate SQL script for database objects - WbGenerateScript

WbGenerateScript re-creates the SQL for objects in the database. It is the command line version of the Generate
Script option in the DbExplorer

SQL Workbench/J User's Manual

142

The command supports the following parameters.

Parameter Description

-objects A comma separated list of table (views or other objects), e.g. -
objects=customer,invoice,v_turnover,seq_cust_id. The parameter supports
specifying tables using wildcards -objects=cust%,inv%.

-exclude A comma separated list of object names to be excluded from the generated script. The parameter
supports wildcards -exclude=foo*,bar*.

-schemas A comma separated list of schemas. If this is not specified then the current (default) schema is used.
If this parameter is provided together with the -objects parameter, then the objects for each
schema are retrieved. e.g. -objects=person -schemas=prod,test will show generate the
SQL for the person table in both schemas.

The parameter supports auto-completion and will show a list of the available schemas.

-types A comma separated list of object types e.g. -types=VIEW,TABLE. This parameter is ignored if -
objects is specified. The possible values for this parameter are the types listed in the drop down of
the "Objects" tab in the DbExplorer.

The parameter supports auto-completion and will show a list of the available object types for the
current DBMS.

-file Defines the outputfile into which all statements are written. If this is not specified, the generated
SQL statements are shown in the message area. file.

-encoding The encoding to be used when writing the output file.

-
includeForeignKeys

By default WbGenerateScript will add all foreign key constraints of the processed tables to
the end of the generated script. If this parameter is set to false no foreign key constraints will be
generated.

The foreign keys can be generated in a separate step using the WbGenerateFKScript command.

-
includeTriggers

If this parameter is is present (or set to true), then all triggers (for the selected schemas) will be
retrieved as well. The default is false.

-
includeProcedures

If this parameter is present (or set to true), then all procedures and functions (for the selected
schemas) will be retrieved as well. The default is false.

-includeDrop If this parameter is present (or set to true) a DROP statement will be generated for each object in the
list.

-
includeTableGrants

This parameter controls the generation of table grants. The default value is true.

-useSeparator If this parameter is present (or set to true), comments will be added that identify the start and end of
each object. The default is false.

25.3. Generate SQL script for foreign key constraints - WbGenerateFKScript

WbGenerateFKScript re-creates the foreign key constraints for the specified tables.

The command supports the following parameters.

Parameter Description

-tables The tables for which the foreign key constraints should be generated. This parameter
accepts wildcards, e.g. -tables=*. To specify tables from multiple schemas, use -
tables=order_mgmt.*, customer_mgmt.*

SQL Workbench/J User's Manual

143

Parameter Description

-exclude A comma separated list of tables names to be excluded from the generated script. The parameter
supports wildcards -exclude=foo*,bar*.

-file Defines the output file into which all statements are written. If this is not specified, the generated
SQL statements are shown in the message area. file.

-encoding The encoding to be used when writing the output file.

25.4. Generate a table definition from an import file - WbGenerateImpTable

WbGenerateImpTable analyzes an import file and generates a suitable CREATE TABLE statement to create a table
with a structure that matches the import file, so that the file can be imported into that table.

By default this command will only check the first 1000 lines of the input file, assuming that the values are distributed
evenly. If the data types for the columns do not reflect the real data, the sample size needs to be increased.

The generated table definition is intended for a quick way to import the data and thus the column definitions are likely
to be not completely correct or optimal.

The command supports the following parameters.

Parameter Description

-file Specifies the input file to be analyzed. The filename
may contain wildcards. When specifying e.g.: -file=/
temp/export/*.txt one table for each text file found
in the directory /temp/export will be created.

-lines Defines the number of lines to analyze. The default is
1000 if this parameter is not specified

A value of 0 (zero) or less, results in parsing the entire file.

-type Possible values: text, ods, xls, xlsx

The type of the import file. The valid types are the same as
for WbImport. The XML type is not supported.

To import spreadsheet files, the necessary additional
libraries must be installed.

-useVarchar Possible values: true, false

If enabled, all columns will be created as varchar.

By default WbGenerateImpTable will try to create
columns with a data type appropriate for the data found
in the import file. If the input data is highly irregular or
very skewed, creating all columns as varchar will make
sure that all rows can be imported without any conversion
error.

-delimiter The delimiter for text files.

-quoteChar The quote character for text files.

-encoding The encoding for text files.

-header Specifies if the input file contains column headers.

-dateFormat The format for date columns.

SQL Workbench/J User's Manual

144

Parameter Description

-timestampFormat The format for timestamp columns in the input file.

-decimal The character used as the decimal separator.

-outputFile By default the generated SQL statement is shown in
the message area. If -outputFile is specified, the
generated SQL statement will be written to that file.

-sheetNumber If the input file is a spreadsheet, this parameter defines
the sheet number to be analyzed. The first sheet has the
number 1.

When specifying * for the sheet number a CREATE
TABLE statement for every sheet will be created.

-table The table name to use (or create)

-runScript Possible values: true, false

By default, the CREATE TABLE statement is only
generated and displayed. If -runScript=true is
specified, the generated SQL script will be executed
immediately.

By default, this will display a dialog to confirm the
execution the CREATE TABLE statement. This
confirmation can be suppressed using the parameter -
prompt=false. In this case the generated statement
will be run directly.

25.5. Show the source of a table - WbTableSource

This command will show the source for a single table. The name of the table is given as an argument to the command:

WbTableSource person

25.6. Show the source of a view - WbViewSource

This command will show the source for a single view. The name of the view is given as an argument to the command:

WbViewSource v_current_orders

25.7. Show the source of a stored procedures - WbProcSource

This command will show the source for a single stored procedure (if the current DBMS is supported by SQL
Workbench/J). The name of the procedure is given as an argument to the command:

WbProcSource theAnswer

25.8. Show the source of a trigger - WbTriggerSource

This command will show the source for a single trigger The name of the trigger is given as an argument to the
command:

SQL Workbench/J User's Manual

145

WbTriggerSource order_trigger

25.9. Generate DELETE statements with dependencies - WbGenerateDelete

The command WbGenerateDelete can be used to generate a SQL script for one or more rows that should be deleted
including all rows from referencing tables (if foreign key constraints are defined)

This is also available through the menu item Data » Generate delete script which will generate the delete for the
selected row(s) in the current result.

The command supports the following parameters.

Parameter Description

-table Specifies the root table of the hierarchy from which to delete the rows.

-columnValue Defines the expression for each PK column to select the rows to be deleted. The value for this
parameter is the column name followed by a colon, followed by the value for this column or an
expression.

e.g.: -columnValue="person_id:42" will select rows where person_id has the value 42.

You can also specify expressions instead: -columnValue="id:<0" or -
columnValue="id:in (1,2,3)".

For a multi-column primary key, specify the parameter multiple times: -
columnValue="person_id:100" -columnValue="address_id:200".

-includeCommit If true a COMMIT statement will be appended to the generated script.

-outputFile The file into which the generated statements should be written. If this is omitted, the statements are
displayed in the message area.

-appendFile Valid values: true, false

If true, the statements are appended to an existing file. Otherwise any existing file will be
overwritten.

-formatSql Valid values: true, false

If true, the generated SQL will be formatted using the SQL formatter. If false each statement
will be written as a single line.

To generate a script that deletes the person with ID=42 and all rows referencing that person, use the following
statement:

WbGenerateDelete -table=person -columnValue="id:42";

To generate a script that deletes any person with an ID greater than 10 and all rows referencing those rows, use the
following statement:

WbGenerateDelete -table=person -columnValue="id: > 10";

To generate a script that deletes rows from the film_category where the primary key consists of the columns
film_id and category_id:

WbGenerateDelete -table=person -columnValue="film_id: in (1,2,5)" -columnValue="category_id: in (7,3,5);

SQL Workbench/J User's Manual

146

26. Show information about database objects
All SQL Workbench/J specific command can only be used from within SQL Workbench/J

26.1. Create a report of the database objects - WbSchemaReport

Creates an XML report of selected tables. This report could be used to generate an HTML documentation of the
database (e.g. using the XSLT command). This report can also be generated from within the Database Object Explorer

The resulting XML file can be transformed into a HTML documentation of your database schema. Sample stylesheets
can be downloaded from http://www.sql-workbench.net/xstl.html. If you have XSLT stylsheets that you would like to
share, please send them to <support@sql-workbench.net>.

To see table and column comments with an Oracle database, you need to enable remarks reporting for
the JDBC driver, otherwise the driver will not return comments. To see the "comment" values from SQL
Server's extended properties, please setup the property retrieval as described here

The command supports the following parameters:

Parameter Description

-file The filename of the output file.

-objects A (comma separated) list of objects to report. Default is all objects that are "tables" or
views. The list of possible objects corresponds to the objects shown in the "Objects" tab of
the DbExplorer.

If you want to generate the report on tables from different schemas you have to use fully
qualified names in the list (e.g. -tables=shop.orders,accounting.invoices)
You can also specify wildcards in the table name: -table=CONTRACT_% will create an
XML report for all tables that start with CONTRACT_.

This parameter supports auto-completion.

-schemas A (comma separated) list of schemas to generate the report from. For each user/schema
all tables are included in the report. e.g. -schemas=public,accounting would
generate a report for all tables in the schemas public and accounting.

If you combine -schemas with -objects, the list of objects will be
applied to every schema unless the object names are supplied with a schema: -
schemas=accounting,invoices -objects=o*,customers.c* will select
all objects starting with O from the schemas accounting,invoices and all objects
starting with C from the schema customers.

The possible values for this parameter correspond to the "Schema" dropdown in the
DbExplorer. The parameter supports auto-completion and will show a list of available
schemas.

-types A (comma separated) list of "table like" object types to include. By default TABLEs and
VIEWs are included. To include e.g. SYSTEM VIEWs and TEMPORARY TABLEs, use the
following option: -types='TABLE,VIEW,SYSTEM VIEW,TEMPORARY TABLE'.
If you include type names that contain a space (or e.g. a dash) you have to quote the whole
list, not just the single value.

The default for this parameter is TABLE,VIEW

http://www.sql-workbench.net/xstl.html

SQL Workbench/J User's Manual

147

Parameter Description

The values for this parameter correspond to the values shown in the "types" dropdown in
the "Objects" tab of the DbExplorer. The parameter supports auto-completion and will
show a list of the available object types for the current DBMS.

You can include any type shown in the DbExplorer's Objects tab. To
e.g. include domain and enum definitions for PostgreSQL use: -
types=table,view,sequence,domain,enum

This parameter supports auto-completion.

-excludeObjectNames A (comma separated) list of tables to exclude from reporting. This is only used if -tables is
also specified. To create a report on all tables, but exclude those that start with 'DEV', use
-tables=* -excludeTableNames=DEV*

-objectTypeNames This parameter can be repeated several times to define the object
names per object type to be retrieved. The format of the argument is -
objectTypeNames=typename:namepattern

The following will select the tables person and address, all sequences starting with
"T" and the view v_person. If the list of object names contains a comma, the whole
parameter value needs to be quoted:

-objectTypeNames='table:person,address' -objectTypeNames=sequence:t* -objectTypeNames=view:v_person

The type names are the same ones that can be used with the -types parameter. This can
be combined with schema qualified names:

-objectTypeNames='table:cust.person,accounting.address' -objectTypeNames=view:public.*

This can also be used to restrict the retrieval of stored procedures: -
objectNameTypes=procedure:P* will include all stored procedures (or functions)
that start with a "P". In this case the parameter -includeProcedures is ignored.

If this parameter is used at least once, all of the following parameters are ignored:
-types and -objects, -includeSequences, -includeTables and -
includeViews are ignored.

The exclusion pattern defined through -excludeObjectNames is applied to all object
types.

-includeTables Controls the output of table information for the report. The default is true. Valid values
are true, false.

-includeSequences Control the output of sequence information for the report. The default is false. Valid
values are true, false.

Adding sequence to the list of types specified with the -types parameter has the same
effect.

-includeTableGrants If tables are included in the output, the grants for each table can also be included with this
parameter. The default value is false.

-includeProcedures Control the output of stored procedure information for the report. The default is false.
Valid values are true, false.

-includeTriggers This parameter controls if table triggers are added to the output. The default value is
true.

-reportTitle Defines the title for the generated XML file. The specified title is written into the tag
<report-title> and can be used when transforming the XML e.g. into a HTML file.

SQL Workbench/J User's Manual

148

Parameter Description

-writeFullSource By default the sourcce code for views is written as retrieved from the DBMS into the
XML file. This might not be a complete create view statement though. When -
writeFullSource=true is specified SQL Workbench/J will generate a complete
create view statement, similar to the code that is shown in the DbExplorer.

The default is false. Valid values are: true, false.

-styleSheet Apply a XSLT transformation to the generated XML file.

-xsltOutput The name of the generated output file when applying the XSLT transformation.

-xsltParameter A list of parameters (key/value pairs) that should be passed to the XSLT processor.
When using e.g. the wbreport2liquibase.xslt stylesheet, the value of the
author attribute can be set using -xsltParameter="authorName=42".
This parameter can be provided multiple times for multiple parameters, e.g. when
using wbreport2pg.xslt: -xsltParameter="makeLowerCase=42" -
xsltParameter="useJdbcTypes=true"

26.2. Show table structure - DESCRIBE

Describe shows the definition of the given table. It can be abbreviated with DESC. The command expects the table
name as a parameter. The output of the command will be several result tabs to show the table structure, indexes and
triggers (if present). If the "described" object is a view, the message tab will additionally contain the view source (if
available).

DESC person;

If you want to show the structure of a table from a different user, you need to prefix the table name with the desired user
DESCRIBE otheruser.person;

26.3. List tables - WbList

This command lists all available tables (including views and synonyms). This output is equivalent to the left part of the
Database Object Explorer's Table tab.

You can limit the displayed objects by either specifying a wildcard for the names to be retrieved: WbList P% will list
all tables or views starting with the letter "P"

The command supports two parameters to specify the tables and objects to be listed. If you want to limit the result by
specifying a wildcard for the name and the object type, you have to use the parameter switches:

Parameter Description

-objects Select the objects to be returned using a wildcard name, e.g. -objects=P%

-types Limit the result to specific object types, e.g. WbList -objects=V% -types=VIEW will return
all views starting with the letter "V".

26.4. List indexes - WbListIndexes

This command will list all indexes defined on tables available to the current user.

The command supports two parameters to specify the tables and objects to be listed. If you want to limit the result by
specifying a wildcard for the name and the object type, you have to use the parameter switches:

SQL Workbench/J User's Manual

149

Parameter Description

-schema Show only indexes for the specified schema, e.g. -schema=somethingelse

-catalog Show only indexes for the specified catalog e.g. -catalog=other_db

-tableName Show only indexes for the tables specified by the parameter. The parameter value can contain a
wildcard, e.g. -tableName=VP% lists the indexes for all tables starting with VP

-indexName Show only indexes with the specified name. The parameter value can contain a wildcard, e.g. -
indexName=PK% lists only indexes that start with PK

26.5. List stored procedures - WbListProcs

This command will list all stored procedures available to the current user. The output of this command is equivalent to
the Database Explorer's Procedure tab.

You can limit the list by supplying a wildcard search for the name, e.g.:

WbListProcs public.p%

26.6. List triggers - WbListTriggers

This command will list all stored triggers available to the current user. The output of this command is equivalent to the
Database Explorer's Triggers tab (if enabled)

26.7. List catalogs - WbListCat

Lists the available catalogs (or databases). It is the same information that is shown in the DbExplorer's "Database" drop
down.

The output of this command depends on the underlying JDBC driver and DBMS. For MS SQL Server this lists the
available databases (which then could be changed with the command USE <dbname>)

For Oracle this command returns nothing as Oracle does not implement the concept of catalogs.

This command calls the JDBC driver's getCatalogs() method and will return its result. If on your database system
this command does not display a list, it is most likely that your DBMS does not support catalogs (e.g. Oracle) or the
driver does not implement this feature.

This command ignores the filter defined for catalogs in the connection profile and always returns all databases.

26.8. List schemas - WbListSchemas

Lists the available schemas from the current connection. The output of this command depends on the underlying JDBC
driver and DBMS. It is the same information that is shown in the DbExplorer's "Schema" drop down.

This command ignores the filter defined for schemas in the connection profile and always returns all schemas.

SQL Workbench/J User's Manual

150

27. Manage macros with SQL Workbench/J command
All SQL Workbench/J specific command can only be used from within SQL Workbench/J

27.1. Define a new macro - WbDefineMacro

Defines a new macro (or overwrites an existing one). This command is primarily intended for the console mode

Parameter Description

-name The name of the new macro

-group The name of the macro group in which the new macro should be stored

-text The text of the macro

-file A file from which to read the macro text. If this parameter is supplied, -text is ignored

-encoding The encoding of the input file specified with the -file parameter.

-expand If true then the new macro is a macro that is expanded while typing

27.2. Delete a macro - WbDeleteMacro

WbDeleteMacro is used to delete a macro, the macro name is passed with the command, e.g:

WbDeleteMacro showData

27.3. List available macros - WbListMacros

Display the defined macros. This command is primarily intended for the console mode.

SQL Workbench/J User's Manual

151

28. Manage variables with SQL Workbench/J
All SQL Workbench/J specific command can only be used from within SQL Workbench/J

More details about using variables can be found in the chapter Variable substitution.

28.1. Define a script variable - WbVarDef

This defines an internal variable which is used for variable substitution during SQL execution.

There are two possibilities to define a variable.

The short syntax is: WbVarDef variable=value

The long syntax allows to define variables in a different way:

Parameter Description

-variable The name of the variable to be defined.

-value The value of the variable.

-file Read the variable definitions from the specified file.

-contentFile Read the contents of the variable from a the specified file.

-values Define a comma separated list of values that are used in the dialog that is shown when
prompting for variable values.

More details and examples can be found in the chapter: Variable substitution

28.2. Delete a script variable - WbVarDelete

This removes a variable.

The syntax is WbVarDelete variable

variable is the name of the variable to be removed. The name can contain wildcards. WbVarDelete * will
remove all defined variables. WbVarDelete id* will remove all variables starting with id.

28.3. Show defined script variables - WbVarList

This shows all defined variables.

SQL Workbench/J User's Manual

152

29. Other SQL Workbench/J specific commands
All SQL Workbench/J specific command can only be used from within SQL Workbench/J

29.1. Confirm script execution - WbConfirm

The WbConfirm command pauses the execution of the current script and displays a message. You can then choose to
stop the script or continue.

WbConfirm can be called in three different ways:

• Without any parameter, then a default message will be displayed

• With just a message text, e.g. WbConfirm Do you really want to drop everything?

• Supplying parameters for the message, the text for the "Yes" choice and the text for the "No" choice using standard
SQL Workbench/J parameters:

WbConfirm -message="Do you really want to drop everything?" -yesText="OK, go
ahead" -noText="No, please stop"

When using WbConfirm in console (or interactive batch) mode, the check if the "Yes" choice was typed by the user
is done by testing if the "Yes" value starts with the text the user enters (ignoring upper/lowercase differences). So if the
"Yes text" is set to "Continue", the user can enter c, co, cont and so on. Because of that, the "No" text should not
start with the same letters as the "Yes" text. When using -yesText=Continue and -noText=Cancel and the
user enters C, this would be regarded as a "Yes".

This command can be used to prevent accidental execution of a script even if confirm updates is not enabled.

This command has no effect in batch mode unless the -interactive parameter was specified.

29.2. Display a message box - WbMessage

The WbMessages command pauses the execution of the current script and displays a message and waits until the
dialog is closed. Unlike WbConfirm the script will always continue once the message dialog is closed.

WbMessage can be called in two different ways:

• With just a message text, e.g. WbMessage Done!

• Supplying parameters for the message and the dialog title:

WbConfirm -message="Script finished" -title="SQL Script"

This command has no effect in batch or console mode.

29.3. Print a text - WbEcho

The command WbEcho can be used to print messages. The following statement:

WbEcho The answer is: 42

SQL Workbench/J User's Manual

153

will print the text "The answer is: 42" to the message pane in GUI mode, or to the console in batch or console mode.

29.4. Run a stored procedure with OUT parameters - WbCall

If you want to run a stored procedure that has OUT parameters, you have to use the WbCall command to correctly see
the returned value of the parameters.

Consider the following (Oracle) procedure:

CREATE OR REPLACE procedure return_answer(answer OUT integer)
IS
BEGIN
 answer := 42;
END;
/

To call this procedure you need to supply a placeholder indicating that a parameter is needed.

SQL> WbCall return_answer(?);
PARAMETER | VALUE
----------+------
ANSWER | 42

(1 Row)
Converted procedure call to JDBC syntax: {call return_answer(?)}
Execution time: 0.453s
SQL>

Stored procedures with REF CURSORS

If the stored procedure has a REF CURSOR (as an output parameter), WbCall will detect this, and retrieve the result
of the ref cursors.

Consider the following (Oracle) stored procedure:

CREATE PROCEDURE ref_cursor_example(pid number, person_result out sys_refcursor, addr_result out sys_refcursor) is
BEGIN
 OPEN person_result FOR
 SELECT *
 FROM person
 WHERE person_id = pid;

 OPEN addr_result FOR
 SELECT a.*
 FROM address a JOIN person p ON a.address_id = p.address_id
 WHERE p.person_id = pid;
END;
/

To call this procedure you use the same syntax as with a regular OUT parameter:

WbCall ref_cursor_example(42, ?, ?);

SQL Workbench/J will display two result tabs, one for each cursor returned by the procedure. If you use WbCall
ref_cursor_example(?, ?, ?) you will be prompted to enter a value for the first parameter (because that is an
IN parameter).

SQL Workbench/J User's Manual

154

PostgreSQL functions that return a refcursor

When using ref cursors in PostgreSQL, normally such a function can simply be used inside a SELECT statement, e.g.
SELECT * FROM refcursorfunc();. Unfortunately the PostgreSQL JDBC driver does not handle this correctly
and you will not see the result set returned by the function.

To display the result set returned by such a function, you have to use WbCall as well

CREATE OR REPLACE FUNCTION refcursorfunc()
 RETURNS refcursor
AS
$$
DECLARE
 mycurs refcursor;
 BEGIN
 OPEN mycurs FOR SELECT * FROM PERSON;
 RETURN mycurs;
 END;
$$ LANGUAGE plpgsql;
/

You can call this function using

WbCall refcursorfunc();

This will then display the result from the SELECT inside the function.

29.5. Execute a SQL script - WbInclude (@)

With the WbInclude command you run SQL scripts without actually loading them into the editor, or call other
scripts from within a script. The format of the command is WbInclude -file=filename;. For DBMS other
then MS SQL, the command can be abbreviated using the @ sign: @filename; is equivalent to WbInclude -
file=filename;. The called script way may also include other scripts. Relative filenames (e.g. as parameters for
SQL Workbench/J commands) in the script are always resolved to the directory where the script is located, not the
current directory of the application.

The reason for excluding MS SQL is, that when creating stored procedures in MS SQL, the procedure parameters
are identified using the @ sign, thus SQL Workbench/J would interpret the lines with the variable definition
as the WbInclude command. If you want to use the @ command with MS SQL, you can configure this in your
workbench.settings configuration file.

If the included SQL script contains SELECT queries, the result of those queries will not be displayed in
the GUI unless -displayResult=true is used.

The long version of the command accepts additional parameters. When using the long version, the filename needs to be
passed as a parameter as well.

Only files up to a certain size will be read into memory. Files exceeding that size will be processed statement by
statement. In this case the automatic detection of the alternate delimiter [44] will not work. If your scripts exceed the
maximum size and you do use the alternate delimiter you will have to use the long version of the command using the -
file and -delimiter parameters.

The command supports the following parameters:

Parameter Description

-file The filename of the file to be included.

SQL Workbench/J User's Manual

155

Parameter Description

-continueOnError Defines the behavior if an error occurs in one of the statements. If this is set to true then
script execution will continue even if one statement fails. If set to false script execution
will be halted on the first error. The default value is false

-delimiter Specify a delimiter to be used that is different from the standard ; delimiter.

A non-standard delimiter will be required to be on a line of its own. If you specify -
delimiter=/ the following will work:

select *
from person
/

but putting the delimiter at the end of a line will not work:

select *
from person/

If this parameter is not specified, the SQL standard ; delimiter will be used.

-encoding Specify the encoding of the input file. If no encoding is specified, the default encoding for
the current platform (operating system) is used.

-verbose Controls the logging level of the executed commands. -verbose=true has the same
effect as adding a WbFeedback on inside the called script. -verbose=false has the
same effect as adding the statement WbFeedback off to the called script.

-displayResult By default any result set that is returned e.g. by a SELECT statement in the script will not
be displayed. By specfying -displayResult=true those results will be displayed.

-printStatements If true, every SQL statement will be printed before execution. This is mainly intended for
console usage, but works in the GUI as well.

-showTiming If true, display the execution time of every SQL statement and the overall execution time
of the script.

-useSavepoint Control if each statement from the file should be guarded with a savepoint when executing
the script. Setting this to true will make execution of the script more robust, but also
slows down the processing of the SQL statements.

-ignoreDropErrors Controls if errors resulting from DROP statements should be treated as an error or as a
warning.

-searchFor
-replaceWith
-ignoreCase
-useRegex

Defines search and replace parameters to change the SQL statements before they are sent
to the database. This can e.g. be used to replace the schema name in DDL script that uses
fully qualified table names.

The replacement is done without checking the syntax of the statements. If the search value
is contained in a string literal or a SQL comment, it is also replaced.

WbInclude also supports conditional execution

29.5.1. Examples

Execute my_script.sql

@my_script.sql;

Execute my_script.sql but abort on the first error

WbInclude -file="my_script.sql" -continueOnError=false;

SQL Workbench/J User's Manual

156

Execute the script create_tables.sql and change all occurances of oldschema to new_schema

WbInclude -file=create_tables.sql -searchFor="oldschema." -replaceWith="new_schema."

Execute a large script that uses a non-standard statement delimiter:

WbInclude -file=insert_10million_rows.sql -delimiter='/';

29.6. Conditional execution

The following SQL Workbench/J commands support conditional execution based on variables:

• WbInclude

• WbSysExec

Conditional execution is controlled using the following parameters:

Parameter Description

-ifDefined The command is only executed if the variable with the specified name is defined. -
ifDefined=some_var

-ifNotDefined The command is only executed if the variable with the specified name is defined. -
ifNotDefined=some_var

-ifEquals The command is only executed if the specified variable has a specific value -
ifEquals='some_var=42'

-ifNotEquals The command is only executed if the specified variable has a specific value -
ifNotEquals='some_var=42'

-ifEmpty The command is only executed if the specified variable is defined but has an
empty value -ifEmpty=some_var. This is essentially a shorthand for -
ifEquals="some_var=''"

-ifNotEmpty The command is only executed if the specified variable is defined and has a a non
empty value -ifNotEmpty=some_var. This is essentially a shorthand for -
ifNotEquals="some_var=''"

29.7. Extract and run SQL from a Liquibase ChangeLog - WbRunLB

If you manage your stored procedures in Liquibase ChangeLogs, you can use this command to run the necessary SQL
directly from the XML file, without the need to copy and paste it into SQL Workbench/J. This is useful when testing
and developing stored procedures that are managed by a Liquibase changeLog.

This is NOT a replacement for Liquibase.

WbRunLB will only extract SQL statements stored in <sql> or <createProcedure> tags or scripts
referenced through the <sqlFile> tag.

It will not convert any of the Liquibase tags to "real" SQL.

WbRunLB will NOT update the Liquibase log table (DATABASECHANGELOG) nor will it check if the
specified changeSet(s) have already been applied to the database.

It is merely a convenient way to extract and run SQL statements stored in a Liquibase XML file!

The attribute splitStatements for the sql tag is evaluated. The delimiter used to split the statements follows the
usual SQL Workbench/J rules (including the use of the alternate delimiter).

SQL Workbench/J User's Manual

157

WbRunLB supports the following parameters:

Parameter Description

-file The filename of the Liquibase changeLog (XML) file. The <include> tag is NOT
supported! SQL statements stored in files that are referenced using Liquibase's include
tag will not be processed.

-changeSet A list of changeSet ids to be run. If this is omitted, then the SQL from all changesets
(containing supported tags) are executed. The value specified can include the
value for the author and the id, -changeSet="Arthur::42" selects the
changeSet where author="Arthur" and id="42". This parameter can be
repeated in order to select multiple changesets: -changeSet="Arthur::42" -
changeSet="Arthur::43".

You can specify wildcards before or after the double colon: -changeSet="*::42"
will select all changesets with the id=42. -changeSet="Author::*" will select all
changesets from "Arthur"

If the parameter value does not contain the double colon it is assumed to be an ID only: -
changeSet="42" is the same as -changeSet="*::42"

If this parameter is omitted, all changesets are executed.

This parameter supports auto-completion if the -file argument is specified.

-continueOnError Defines the behaviour if an error occurs in one of the statements. If this is set to true
then script execution will continue even if one statement fails. If set to false script
execution will be halted on the first error. The default value is false

-encoding Specify the encoding of the input file. If no encoding is specified, UTF-8 is used.

29.8. Handling tables or updateable views without primary keys

29.8.1. Define primary key columns - WbDefinePK

To be able to directly edit data in the result set (grid) SQL Workbench/J needs a primary key on the underlying table.
In some cases these primary keys are not present or cannot be retrieved from the database (e.g. when using updateable
views). To still be able to automatically update a result based on those tables (without always manually defining the
primary key) you can manually define a primary key using the WbDefinePk command.

Assuming you have an updateable view called v_person where the primary key is the column person_id. When
you simply do a SELECT * FROM v_person, SQL Workbench/J will prompt you for the primary key when you try
to save changes to the data. If you run

WbDefinePk v_person=person_id

before retrieving the result, SQL Workbench/J will automatically use the person_id as the primary key (just as if this
information had been retrieved from the database).

To delete a definition simply call the command with an empty column list:

WbDefinePk v_person=

If you want to define certain mappings permanently, this can be done using a mapping file that is specified in the
configuration file. The file specified has to be a text file with each line containing one primary key definition in the
same format as passed to this command. The global mapping will automatically be saved when you exit the application
if a filename has been defined. If no file is defined, then all PK mappings that you define are lost when exiting the
application (unless you explicitely save them using WbSavePkMap

SQL Workbench/J User's Manual

158

v_person=person_id
v_data=id1,id2

will define a primary key for the view v_person and one for the view v_data. The definitions stored in that file
can be overwritten using the WbDefinePk command, but those changes won't be saved to the file. This file will be
read for all database connections and is not profile specific. If you have conflicting primary key definitions for different
databases, you'll need to execute the WbDefinePk command each time, rather then specifying the keys in the mapping
file.

When you define the key columns for a table through the GUI, you have the option to remember the defined mapping.
If this option is checked, then that mapping will be added to the global map (just as if you had executed WbDefinePk
manually.

The mappings will be stored with lowercase table names internally, regardless how you specify them.

29.8.2. List defined primary key columns - WbListPKDef

To view the currently defined primary keys, execute the command WbListPkDef.

29.8.3. Load primary key mappings - WbLoadPKMap

To load the additional primary key definitions from a file, you can use the the WbLoadPKMap command. If a filename
is defined in the configuration file then that file is loaded. Alternatively if no file is configured, or if you want to load a
different file, you can specify the filename using the -file parameter.

29.8.4. Save primary key mappings - WbSavePKMap

To save the current primary key definitions to a file, you can use the the WbSavePKMap command. If a filename is
defined in the configuration file then the definition is stored in that file. Alternatively if no file is configured, or if you
want to store the current mapping into a different file, you can specify the filename using the -file parameter.

29.9. Change the default fetch size - WbFetchSize

The default fetch size for a connection can be defined in the connection profile. Using the command WbFetchSize
you can change the fetch size without changing the connection profile.

The following script changes the default fetch size to 2500 rows and then runs a WbExport command.

WbFetchSize 2500;
WbExport -sourceTable=person -type=text -file=/temp/person.txt;

WbFetchSize will not change the current connection profile.

29.10. Run statements as a single batch - WbStartBatch, WbEndBatch

To send several SQL Statements as a single "batch" to the database server, the two commands WbStartBatch
and WbEndBatch can be used. All statements between these two will be sent as a single statement (using
executeBatch()) to the server.

Note that not all JDBC drivers support batched statements, and the flexibility what kind of statements can be batched
varies between the drivers as well. Most drivers will not accept different types of statements e.g. mixing DELETE and
INSERT in the same batch.

SQL Workbench/J User's Manual

159

To send a group of statements as a single batch, simply use the command WbStartBatch to mark the beginning and
WbEndBatch to mark the end. You have to run all statements together either by using "Execute all" or by selecting
all statements (including WbStartBatch and WbEndBatch) and then using "Execute selected". The following example
sends all INSERT statements as a single batch to the database server:

WbStartBatch;
INSERT INTO person (id, firstname, lastname) VALUES (1, 'Arthur', 'Dent');
INSERT INTO person (id, firstname, lastname) VALUES (2, 'Ford', 'Prefect');
INSERT INTO person (id, firstname, lastname) VALUES (3, 'Zaphod', 'Beeblebrox');
INSERT INTO person (id, firstname, lastname) VALUES (4, 'Tricia', 'McMillian');
WbEndBatch;
COMMIT;

29.11. Extracting BLOB content - WbSelectBlob

To save the contents of a BLOB or CLOB column into an external file the WbSelectBlob command can be used.
Most DBMS support reading of CLOB (character data) columns directly, so depending on your DBMS (and JDBC
driver) this command might only be needed for binary data.

The syntax is very similar to the regular SELECT statement, an additional INTO keyword specifies the name of the
external file into which the data should be written:

WbSelectBlob blob_column
INTO c:/temp/image.bmp
FROM theTable
WHERE id=42;

Even if you specify more then one column in the column list, SQL Workbench/J will only use the first column. If
the SELECT returns more then one row, then one output file will be created for each row. Additional files will be
created with a counter indicating the row number from the result. In the above example, image.bmp, image_1.bmp,
image_3.bmp and so on, would be created.

WbSelectBlob is intended for an ad-hoc retrieval of a single LOB column. If you need to extract the contents of
several LOB rows and columns it is recommended to use the WbExport command.

You can also manipulate (save, view, upload) the contents of BLOB columns in a result set. Please refer to BLOB
support for details.

29.12. Control feedback messages - WbFeedback

Normally SQL Workbench/J prints the results for each statement into the message panel. As this feedback can
slow down the execution of large scripts, you can disable the feedback using the WbFeedback command. When
WbFeedback OFF is executed, only a summary of the number of executed statements will be displayed, once the
script execution has finished. This is the same behaviour as selecting "Consolidate script log" in the options window.
The only difference is, that the setting through WbFeedback is temporary and does not affect the global setting.

WbFeedback traceOn can be used to enable printing of every executed statement to the screen. The SQL statement
printed will be the one after variable substitution and macro expansion. WbFeedback traceOff will turn tracing of
statements off.

29.13. Setting connection properties - SET

The SET command is passed on directly to the driver, except for the parameters described in this chapter because they
have an equivalent JDBC call which will be executed instead.

SQL Workbench/J User's Manual

160

Oracle does not have a SQL set command. The SET command that is available in SQL*Plus is a specific SQL*Plus
command and will not work with other client software. Most of the SQL*Plus SET commands only make sense within
SQL*Plus (e.g. formatting of the results). To be able to run SQL scripts that are intended for Oracle SQL*PLus, any
error reported from the SET command when running against an Oracle database will silently be ignored and only
logged as a warning.

29.13.1. FEEDBACK

SET feedback ON/OFF is equivalent to the WbFeedback command, but mimics the syntax of Oracle's SQL*Plus
utility.

29.13.2. AUTOCOMMIT

With the command SET autocommit ON/OFF autocommit can be turned on or off for the current connection.
This is equivalent to setting the autocommit property in the connection profile or toggling the state of the SQL »
Autocommit menu item.

29.13.3. MAXROWS

Limits the number of rows returned by the next statement. The behaviour of this command is a bit different between the
console mode and the GUI mode. In console mode, the maxrows stay in effect until you explicitely change it back using
SET maxrows again.

In GUI mode, the maxrows setting is only in effect for the script currently being executed and will only temporarily
overwrite any value entered in the "Max. Rows" field.

29.14. Changing Oracle session behavior - SET

The following options for the SET command are only available when being connected to an Oracle database.

29.14.1. SERVEROUTPUT

SET serveroutput on is equivalent to the ENABLEOUT command and SET serveroutput off is
equivalent to DISABLEOUT command.

29.14.2. AUTOTRACE

This enables or disables the "autotrace" feature similar to the one in SQL*Plus. The syntax is equivalent to the
SQL*Plus command and supports the following options:

Option Description

ON Turns on autotrace mode. After running a statement, the statement result (if it is a query), the
statistics and the execution plan for that statement are displayed as separate result tabs.

OFF Turns off the autotrace mode.

TRACEONLY Like ON, but does not display the result of a query.

REALPLAN This is an extension to the SQL*Plus EXPLAIN mode. Using EXPLAIN, SQL Workbench/J will
simply run an EXPLAIN PLAN for the statement (and the statement will not be executed) - this is
the same behavior as SQL*Plus' EXPLAIN mode.

http://docs.oracle.com/cd/E11882_01/server.112/e16604/ch_twelve040.htm#i2698680

SQL Workbench/J User's Manual

161

Option Description

Using REALPLAN, SQL Workbench/J will run the statement and then retrieve the execution
plan that was generated while running the statement. This might yield a different result than
regular EXPLAIN mode. The actual plan also contains more details about estimated and
actual row counts. This plan is retrieved using dbms_xplan.display_cursor(). If
REALPLAN is used, the actual SQL statement sent to the server will be changed to include the
GATHER_PLAN_STATISTICS hint.

The information shown in autotrace mode can be controlled with two options after the ON or TRACEONLY parameter.
STATISTICS will fetch the statistics about the execution and EXPLAIN which will display the execution plan for the
statement. If not additional parameter is specified, EXPLAIN STATISTICS is used.

If statistics are requested, query results will be fetched from the database server but they will not be displayed.

Unlike SQL*Plus, the keywords (AUTOTRACE, STATISTICS, EXPLAIN) cannot be abbreviated!

For more information about the prerequisites for the autotrace mode, see the description of DBMS specific features.

29.15. Changing read only mode - WbMode

In the connection profile two options can be specified to define the behavior when running commands that might
change or update the database: a "read only" mode that ignores such commands and a "confirm all" mode, where you
need to confirm any statement that might change the database.

These states can temporarily be changed without changing the profile using the WbMode command.

This changes the mode for all editor tabs, not only for the one where you run the command.

Parameters for the WbMode command are:

Parameter Description

reset Resets the flags to the profile's definition

normal Makes all changes possible (turns off read only and confirmations)

confirm Enables confirmation for all updating commands

readonly Turns on the read only mode

The following example will turn on read only mode for the current connection, so that any subsequent statement that
updates the database will be ignored

WbMode readonly;

To change the current connection back to the settings from the profile use:

WbMode reset;

29.16. Count rows for all tables - WbRowcCount

This command retrieves the row counts for several tables at once. If called without parameters the row counts for all
tables accessible to the current user are counted.

The command supports the following parameters to specify the tables (or views) to be counted.

SQL Workbench/J User's Manual

162

Parameter Description

-schema Count the rows for tables from the given schemas, e.g. -schema=public,local

The parameter supports auto-completion and will show a list of available schemas.

-catalog Show only indexes for the specified catalog e.g. -catalog=other_db

-objects Show only the row counts for the tables (or views) specified by the parameter. The parameter value
can contain wildcards, e.g. -objects=PR%,ORD% will count the rows for all tables with names
that either start with PR or ORD

The parameter supports auto-completion and will show a list of available tables.

-types Define the types of objects which should be selected. By default only tables are considered. If you
also want to count the rows for views, use -types=table,view

The parameter supports auto-completion and will show a list of available object types.

-orderBy Defines how the resulting table should be sorted. By default it will be sorted alphabetically by table
name. The -orderBy parameter specifies the columns to sort the result by. By default, sorting
is done ascending, if you want a descending sort, append :desc to the column name, e.g.: -
orderBy="rowcount:desc".

So sort by multiple columns separate the column names with a comma: -
orderBy="rowcount:desc,name:desc" or -orderBy="rowcount,name:desc"

-
excludeColumns

Possible values: catalog, schema, type

By default WbRowCount will display the same columns as the table list in the DbExplorer. If not all
columns are needed or wanted, this parameter can be used to exclude certain columns.

You can specify a comma separated list of columns to be excluded, e.g. -
excludeColumns=type,catalog. The columns ROWCOUNT and NAME can not be excluded.

The name database can be used instead of catalog.

If none of the above parameters are used, WbRowCount assumes that a list ot table names was
specified. WbRowCount person,address,ordersis equivalent to WbRowCount -
objects=person,address,orders. When called without any parameters the row counts for all tables
accessible to the current user will be displayed.

Unlike the Count rows item in the DbExplorer, WbRowCount displays the result for all tables once it is finished. It
does not incrementally update the output.

29.17. Change the connection for a script - WbConnect

With the WbConnect command, the connection for the currently running script can be changed.

When this command is run in GUI mode, the connection is only changed for the remainder of the script execution.
Therefor at least one other statement should be executed together with the WbConnect command. Either by running
the complete script of the editor or selecting the WbConnect command together with other statements. Once the script
has finished, the connection is closed and the "global" connection (selected in the connect dialog) is active again. This
also applies to scripts that are run in batch mode or scripts that are started from within the console using WbInclude.

When this command is entered directly in the command line of the console mode, the current connection is closed and
the new connection is kept open until the application ends, or a new connection is established using WbConnect on the
command line again.

There are three different ways to specify a connection:

SQL Workbench/J User's Manual

163

29.17.1. By specifying a profile

Parameter Description

-profile Specifies the profile name to connect to.

This parameter is ignored if either -connection or the detailed connection informations
are supplied individually.

-profileGroup Specifies the group in which the profile is stored. This is only required if the profile name is
not unique

29.17.2. By specifying a simple connection string

Parameter Description

-connection Allows to specify a full connection definition as a single parameter (and thus does not require
a pre-defined connection profile).

The connection is specified with a comma separated list of key value pairs:

• username - the username for the connection

• password - the password for the connection

• url - the JDBC URL

• driver - the class name for the JDBC driver. If this is not specified, SQL Workbench/J
will try to determine the driver from the JDBC URL

• driverJar - the full path to the JDBC driver. This not required if a driver for the
specified class is already configured

e.g.: "username=foo,password=bar,url=jdbc:postgresql://
localhost/mydb"

If an appropriate driver is already configured the driver's classname or the JAR file don't
have to be specified.

If an appropriate driver is not configured, the driver's jar file must be specified:

"username=foo,password=bar,url=jdbc:postgresql://localhost/
mydb,driverjar=/etc/drivers/postgresql.jar"
SQL Workbench/J will try to detect the driver's classname automatically (based on the JDBC
URL).

If this parameter is specified, -profile is ignored.

The individual parameters controlling the connection behavior can be used together with -
connection, e.g. -autocommit or -fetchSize

29.17.3. By specifying all connection attributes

Parameter Description

-url The JDBC connection URL

-username Specify the username for the DBMS

SQL Workbench/J User's Manual

164

Parameter Description

-password Specify the password for the user

If this parameter is not specified (but -url and -username) then you will be prompted to
enter the password. To supply an empty password use -password= in the command line
when starting SQL Workbench/J

-driver Specify the full class name of the JDBC driver

-driverJar Specify the full pathname to the .jar file containing the JDBC driver

-autocommit Set the autocommit property for this connection. You can also control the autocommit mode
from within your script by using the SET AUTOCOMMIT command.

-rollbackOnDisconnect If this parameter is set to true, a ROLLBACK will be sent to the DBMS before the connection
is closed. This setting is also available in the connection profile.

-checkUncommitted If this parameter is set to true, SQL Workbench/J will try to detect uncommitted changes in
the current transaction when the main window (or an editor panel) is closed. If the DBMS
does not support this, this argument is ignored. It also has no effect when running in batch or
console mode.

-trimCharData Turns on right-trimming of values retrieved from CHAR columns. See the description of the
profile properties for details.

-removeComments This parameter corresponds to the Remove comments setting of the connection profile.

-fetchSize This parameter corresponds to the Fetch size setting of the connection profile.

-ignoreDropError This parameter corresponds to the Ignore DROP errors setting of the connection profile.

-altDelimiter This parameter corresponds to the Alternate delimiter setting of the connection profile.

If none of the parameters is supplied when running the command, it is assumed that any value after WbConnect is the
name of a connection profile, e.g.:

WbConnect production

will connect using the profile name production, and is equivalent to

WbConnect -profile=production

29.18. Show the history of SQL statements - WbHistory

This command is primarily intended for console mode to show the statements that have been executed. In console mode
the number of any of the listed statements can be entered to re-execute that statement from the history directly.

29.19. Run an XSLT transformation - WbXslt

Transforms an XML file via a XSLT stylesheet. This can be used to format XML input files into the correct format for
SQL Workbench/J or to transform the output files that are generated by the various SQL Workbench/J commands.

Parameters for the XSLT command:

Parameter Description

-inputfile The name of the XML source file.

-xsltoutput The name of the generated output file.

-stylesheet The name of the XSLT stylesheet to be used.

SQL Workbench/J User's Manual

165

Parameter Description

-xsltParameter A list of parameters (key/value pairs) that should be passed to the XSLT processor.
When using e.g. the wbreport2liquibase.xslt stylesheet, the value of the
author attribute can be set using -xsltParameter="authorName=42".
This parameter can be provided multiple times for multiple parameters, e.g. when
using wbreport2pg.xslt: -xsltParameter="makeLowerCase=42" -
xsltParameter="useJdbcTypes=true"

29.20. Running operating system commands - WbSysExec

To run an operating system command use WbSysExec followed by a valid command for your operating system.

To run the program ls the following call can be used:

WbSysExec ls

To run Windows commands that are internal to cmd.exe such as DIR, you must call cmd.exe with the /c switch to
make sure cmd.exe is terminated:

WbSysExec cmd /c dir /n

If you need to specify a working directory for the program, or want to specify the command line arguments
individually, a second format is available using the standard SQL Workbench/J parameter handling:

Parameter Description

-program The name of the executable program

-argument One commandline argument for the program. This parameter can be repeated multiple
times.

-dir The working directory to be used when calling the external program

WbSysExec also supports conditional execution

To run an internal Windows command using the second format, use the following syntax:

WbSysExec -program='cmd.exe' -argument='/c' -argument='dir /n' -dir='c:\temp\'

29.21. Opening a file with the default application - WbSysOpen

WbSyOpen can be used to open a file with the default application of the operating system.

WbExport -file=c:/temp/person.txt -sourceTable=person -type=text -header=true;
WbSysOpen c:/temp/person.txt;

Due to limitations of the Java console mode, neither WbSysExec nor WbSysOpen can be used to run a
text editor (vi, vim) in console mode (and putting SQL Workbench/J into the background).

29.22. Change an internal configuration parameter - WbSetConfig

Not all configuration parameters are available through the Options Dialog and have to be changed manually in the file
workbench.settings. Editing the file requires to close the application.

SQL Workbench/J User's Manual

166

When using WbSetConfig configuration properties can be changed permanently without restarting SQL Workbench/
J.

Any value that is changed through this command will be saved automatically in workbench.settings when the
application is closed.

If you want to e.g. disable the use of Savepoints in the SQL statements entered interactively, the following command
will turn this off for PostgreSQL:

WbSetConfig workbench.db.postgresql.sql.usesavepoint=false

For a list of configuration properties that can be changed, please refer to Advanced configuration options

If you supply only the property key, the current value will be displayed. If no argument is supplied for
WbSetConfig all properties are displayed. You can also supply a partial property key. WbSetConfig
workbench.db.postgresql will list all PostgreSQL related properties. You can directly edit the properties in the
result set.

The value [dbid] inside the property name will get replaced with the current DBID.

The following command changes the property named workbench.db.postgresql.ddlneedscommit if the
current connection is against a PostgreSQL database:

WbSetConfig workbench.db.[dbid].ddlneedscommit=true

SQL Workbench/J User's Manual

167

30. DataPumper

30.1. Overview

The export and import features are useful if you cannot connect to the source and the target database at once. If your
source and target are both reachable at the same time, it is more efficient to use the DataPumper to copy data between
two systems. With the DataPumper no intermediate files are necessary. Especially with large tables this can be an
advantage.

To open the DataPumper, select Tools » DataPumper

The DataPumper lets you copy data from a single table (or SELECT query) to a table in the target database. The
mapping between source columns and target columns can be specified as well

Everything that can be done with the DataPumper, can also be accomplished with the WbCopy command. The
DataPumper can also generate a script which executes the WbCopy command with the correct parameters according to
the current settings in the window. This can be used to create scripts which copy several tables.

The DataPumper can also be started as a stand-alone application - without the main window - by
specifying -datapumper=true in the command line when starting SQL Workbench/J.

When opening the DatPumper from the main window, the main window's current connection will be used
as the initial source connection. You can disable the automatic connection upon startup with the property
workbench.datapumper.autoconnect in the workbench.settings file.

30.2. Selecting source and target connection

The DataPumper window is divided in three parts: the upper left part for defining the source of the data, the upper right
part for defining the target, and the lower part to adjust various settings which influence the way, the data is copied.

After you have opened the DataPumper window it will automatically connect the source to the currently selected
connection from the main window. If the DataPumper is started as a separate application, no initial connection will be
made.

To select the source connection, press the ellipsis right next to the source profile label. The standard connection dialog
will appear. Select the connection you want to use as the source, and click OK. The DataPumper will then connect to
the database. Connecting to the target database works similar. Simply click on the ellipsis next to the target profile box.

Instead of a database connection as the source, you can also select a text or XML file as the source for the DataPumper.
Thus it can also be used as a replacement of the WbImport command.

The drop down for the target table includes an entry labeled "(Create new table)". For details on how to create a new
table during the copy process please refer to the advanced tasks section.

After source and target connection are established you can specify the tables and define the column mapping between
the tables.

30.3. Copying a complete table

To copy a single table select the source and target table in the dropdowns (which are filled as soon as the connection is
established)

SQL Workbench/J User's Manual

168

After both tables are selected, the middle part of the window will display the available columns from the source and
target table. This grid display represents the column mapping between source and target table.

30.3.1. Mapping source to target columns

Each row in the display maps a source column to a target column. Initially the DataPumper tries to match those columns
which have the same name and data type. If no match is found for a target column, the source column will display
(Skip target column) This means that the column from the target table will not be included when inserting data
into the target table (technically speaking: it will be excluded from the column list in the INSERT statement).

30.3.2. Restricting the data to be copied

You can restrict the number of rows to be copied by specifying a WHERE clause which will be used when retrieving the
data from the source table. The WHERE clause can be entered in the SQL editor in the lower part of the window.

30.3.3. Deleting all rows from the target table

When you select the option "Delete target table", all rows from the target table will be deleted before the copy process
is started. This is done with a DELETE FROM <tablename>; When you select this option, make sure the data can
be deleted in this way, otherwise the copy process will fail.

The DELETE will not be committed right away, but at the end of the copy process. This is obviously only of interest if
the connection is not done with autocommit = true

30.3.4. Continuing when an insert fails

In some cases inserting of individual rows in the target table might fail (e.g. a primary key violation if the table is not
empty). When selecting the option "Continue on error", the copy process will continue even if rows fail to insert

30.3.5. Committing changes

By default all changes are committed at the end, when all rows have been copied. By supplying a value in the field
"Commit every" SQL Workbench/J will commit changes every time the specified number of rows has been inserted
into the target. When a value of 50 rows has been specified, and the source table contains 175 rows, SQL Workbench/J
will send 4 COMMITs to the target database. After inserting row 50, row 100, row 150 and after the last row.

30.3.6. Batch execution

If the JDBC driver supports batch updates, you can enable the use of batch updates with this check box. The check
box will be disabled, if the JDBC driver does not support batch updates, or if a combined update mode (insert,update,
update,insert) is selected.

Batch execution is only available if either INSERT or UPDATE mode is selected.

30.3.7. Update mode

Just like the WbImport and WbCopy commands, the data pumper can optionally update the data in the target table.
Select the approriate update strategy from the Mode drop down. The DataPumper will use the key columns defined in
the column mapper to generate the UPDATE command. When using update you have to select at least one key column.

You cannot use the update mode, if you select only key columns, The values from the source are used to build up the
WHERE clause for the UPDATE statement. If ony key columns are defined, then there would be nothing to update.

SQL Workbench/J User's Manual

169

For maximum performance, choose the update strategy that will result in a successful first statement more often. As a
rule of thumb:

• Use -mode=insert,update, if you expect more rows to be inserted then updated.

• Use -mode=update,insert, if you expect more rows to be updated then inserted.

30.4. Advanced copy tasks

30.4.1. Populating a column with a constant

To populate a target column with a constant value. The name of the source columns can be edited in order to supply a
constant value instead of a column name. Any expression understood by the source database can be entered there. Note
that if (Skip target column) is selected, the field cannot be edited.

30.4.2. Creating the target table

You can create the target table "on the fly" by selecting (Create target table) from the list of target tables.
You will be prompted for the name of the new table. If you later want to use a different name for the table, click on the
button to the right of the drop down.

The target table will be created without any primary key definitions, indexes of foreign key constraints.

The DataPumper tries to map the column types from the source columns to data types available on the target database.
For this mapping it relies on information returned from the JDBC driver. The functions used for this may not be
implemented fully in the driver. If you experience problems during the creation of the target tables, please create the
tables manually before copying the data. It will work best if the source and target system are the same (e.g. PostgreSQL
to PostgreSQL, Oracle to Oracle, etc).

Most JDBC drivers map a single JDBC data type to more then one native datatype. MySql maps its VARCHAR, ENUM
and SET type to java.sql.Types.VARCHAR. The DataPumper will take the first mapping which is returned by the
driver and will ignore all subsequent ones. Any datatype that is returned twice by the driver is logged as a warning in
the log file. The actual mappings used, are logged with type INFO.

To customize the mapping of generic JDBC datatypes to DBMS specific datatypes, please refer to Customizing data
type mapping

30.4.3. Using a query as the source

If you want to copy the data from several tables into one table, you can use a SELECT query as the source of your data.
To do this, select the option Use SQL query as source below the SQL editor. After you have entered you query
into the editor, click the button Retrieve columns from query. The columns resulting from the query will then be put
into the source part of the column mapping. Make sure, the columns are named uniquely when creating the query. If
you select columns from different tables with the same name, make sure you use a column alias to rename the columns.

Creating the target table "on the fly" is not available when using a SQL query as the source of the data

SQL Workbench/J User's Manual

170

31. Database Object Explorer

The Database Object Explorer displays the available database objects such as Tables, Views, Triggers and Stored
Procedures.

There are three ways to start the DbExplorer

Using Tools » Database Explorer.
Passing the paramter -dbexplorer to the main program (sqlworkbench.sh, SQLWorkbench.exe or
SQLWorkbench64.exe)

At the top of the window, the current schema and/or catalog can be selected. Whether both drop downs are available
depends on the current DBMS. For Microsoft SQL Server, both the schema and the database can be changed. The
labels next to the drop down are retrieved from the JDBC driver and should reflect the terms used for the current DBMS
(Schema for PostgreSQL and Oracle, Owner and Database for SQL Server, Database for MySQL).

The displayed list can be filtered using the quick filter above the list. To filter the list by the object name, simply enter

the criteria in the filter field, and press ENTER or click the filter icon . The criteria field will list the last 25 values
that were entered in the drop down. If you want to filter based on a different column of the list, right-click on the criteria
field, and select the desired column from the Filtercolumn menu item of the popup menu. The same filter can be
applied on the Procedures tab.

Synonyms are displayed if the current DBMS supports them. You can filter out unwanted synonyms by specifying a
regular expression in your workbench.settings file. This filter will also be applied when displaying the list of
available tables when opening the command completion popup.

The first tab displays the structure of tables and views. The type of object displayed can be chosen from the drop down
right above the table list. This list will be returned by the JDBC driver, so the available "Table types" can vary from
DBMS to DBMS.

The menu item Database Explorer will either display the explorer as a new window or a new panel, depending on the
system options. If a DbExplorer is already open (either a window or a tab), the existing one is made visible (or active),
when using this menu item.

You can open any number of additional DbExplorer tabs or windows using Tools » New DbExplorer panel or Tools »
New DbExplorer window

31.1. Objects tab

The object list displays tables, views, sequences and synonyms (basically anyhting apart from procedures or functions).
The context menu of the list offers several additional functions:

Export data

This will execute a WbExport command for the currently selected table(s). Choosing this option is
equivalent to do a SELECT * FROM table; and then executing SQL » Export query result from
the SQL editor in the main window. See the description of the WbExport command for details.

When using this function, the customization for data types is not applied to the generated SELECT
statement.

Count rows

This will count the rows for each selected table object. The rowcounts will be opened in a new
window. This is the same functionality as the WbRowCount command.

SQL Workbench/J User's Manual

171

Put SELECT into

This will put a SELECT statement into the SQL editor to display all data for the selected table. You
can choose into which editor tab the statement will be written. The currently selected editor tab is
displayed in bold (when displaying the DbExplorer in a separate window). You can also put the
generated SQL statement into a new editor tab, by selecting the item New tab

When using this function, the customization for data types will be applied to the generated SELECT
statement.

Create empty INSERT

This creates an empty INSERT statement for the currently selected table(s). This is intended for
programmers that want to use the statement inside their code.

Create empty UPDATE

This creates an empty UPDATE statement for the currently selected table(s). This is intended for
programmers that want to use the statement inside their code.

Create default SELECT

This creates a SELECT for the selected table(s) that includes all columns for the table. This feature is
intended for programmers who want to put a SELECT statement into their code.

If you want to generate a SELECT statement to actually retrieve data from within the editor, please
use the Put SELECT into option.

When using this function, the customization for data types is not applied to the generated SELECT
statement.

Create DDL Script

With this command a script for multiple objects can be created. Select all the tables, views or other
objects in the table list, that you want to create a script for. Then right click and select "Create DDL
Script". This will generate one script for all selected items in the list.

When this command is selected, a new window will be shown. The window contains a status bar
which indicates the object that is currently processed. The complete script will be shown as soon as
all objects have been processed. The objects will be processed in the order: SEQUENCES, TABLES,
VIEWS, SYNONYMS.

The same script can also be generated using the WbGenerateScript command.

Create schema report

This will create an XML report of the selected tables. You will be prompted to specify the location of
the generated XML file. This report can also be generated using the WbSchemaReport command.

Drop

Drops the selected objects. If at least one object is a table, and the currently used DBMS supports
cascaded dropping of constraints, you can enable cascaded delete of constraints. If this option is
enabled SQL Workbench/J would generate e.g. for Oracle a DROP TABLE mytable CASCADE
CONSTRAINTS. This is necessary if you want to drop several tables at the same time that have
foreign key constraints defined.

SQL Workbench/J User's Manual

172

If the current DBMS does not support a cascading drop, you can order the tables so that foreign
keys are detected and the tables are dropped in the right order by clicking on the Check foreign keys
button.

If the checkbox "Add missing tables" is selected, any table that should be dropped before any of the
selected tables (because of foreign key constraints) will be added to the list of tables to be dropped.

Generate DROP script

This creates a script that first removes all incoming foreign keys to the selected tables, the necessary
DROP statements and the statements to re-create the foreign keys.

For more details, please refer to the description of the WbGenerateDrop statement.

Delete data

Deletes all rows from the selected table(s) by executing a DELETE FROM table_name; to
the server for each selected table. If the DBMS supports TRUNCATE then this can be done with
TRUNCATE as well. Using TRUNCATE is usually faster as no transaction state is maintained.

The list of tables is sorted according to the sort order in the table list. If the tables have foreign key
constraints, you can re-order them to be processed in the correct order by clicking on the Check
foreign keys button.

If the check box "Add missing tables" is selected, any table that should be deleted before any of the
selected tables (because of foreign key constraints) will be added to the list of tables.

ALTER script

After you have changed the name of a table in the list of objects, you can generate and run a SQL
script that will apply that change to the database.

For details please refer to the section Changing table definitions

31.2. Table details

When a table is selected, the right part of the window will display its column definition, the SQL statement to create the
table, any index defined on that table (only if the JDBC driver returns that information), other tables that are referenced
by the currently selected table, any table that references the currently selected table and any trigger that is defined on
that table.

The column list will also display any comments defined for the column (if the JDBC driver returns the information).
Oracle's JDBC driver does not return those comments by default. To enable the display of column comments
(remarks) you have to supply an extended property in your connection profile. The property's name should be
remarksReporting and the value should be set to true.

If the DBMS supports synonyms, the columns tab will display the column definition of the underlying table or view.
The source tab will display the statement to re-create the synonym. If the underlying object of the synonym is a table,
then indexes, foreign keys and triggers for that table will be displayed as well.

Note that if the synonym is not for a view, those tabs will still be displayed, but will not show any information.

SQL Workbench/J User's Manual

173

31.3. Modifying the definition of database objects
Applying changes to the definition of a table (or other database objects) is only possible if the necessary
ALTER statements have been configured. For most of the major DBMS these statements are already built
into SQL Workbench/J.

If your changes are rejected (e.g. while changing a table name or the datatype of a column), please make
sure that you have enabled the option Allow table altering. If that option is enabled and your DBMS does
support the change you were trying to do, please send a mail with the necessary information to the support
email address.

31.3.1. Changing the table definition

You can edit the definition of the columns, add new columns or delete existing columns directly in the list of columns.
To apply the changes, click on the Apply DDL button.

31.3.2. Renaming objects

You can change the name of a table (or other objects if the DBMS supports that) directly in the object list. For DBMS
that support it, you can also edit the remarks column of the table to change the documentation.

Once you have changed a name (or several) the menu item "ALTER Script" in the context menu of the object list
will be enabled. Additionally a button Apply DDL will appear in the status bar of the object list. Both will bring up a
window with the necessary SQL statements to apply your changes. You can save the generated script to a file or run the
statements directly from that window.

31.4. Table data

The data tab will display the data from the currently selected table. There are several options to configure the display of
this tab. The Autoload check box, controls the retrieval of the data. If this is checked, then the data will be retrieved
from the database as soon as the table is selected in the table list (and the tab is visible).

The data tab will also display a total row count of the table. As this display can take a while, the automatic retrieval of
the row count can be disabled. To disable the automatic calculation of the table's row count, click on the Settings button
and deselect the check box Autoload table row count. To calculate the table's row count when this is not done
automatically, click on the Rows label. You can cancel the row count retrieval while it's running by clicking on the
label again.

The data tab is only available if the currently selected objects is recognized as an object that can can be "SELECTED".
Which object types are included can be defined in the settings for SQL Workbench/J See selectable object types for
details.

You can define a maximum number of rows which should be retrieved. If you enter 0 (zero) then all rows are retrieved.
Limiting the number of rows is useful if you have tables with a lot of rows, where the entire table would not fit into
memory.

In addition to the max rows setting, a second limit can be defined. If the total number of rows in the table exceeds this
second limit, a warning is displayed, whether the data should be loaded.

This is useful when the max rows parameter is set to zero and you accidently display a table with a large number of
rows.

If the automatic retrieval is activated, then the retrieve of the data can be prevented by holding down the Shift key while
switching to the data tab.

SQL Workbench/J User's Manual

174

The data in the tab can be edited just like the data in the main window. To add or delete rows, you can either use the
buttons on the toolbar in the upper part of the data display, or the popup menu. To edit a value in a field, simply double
click that field, start typing while the field has focus (yellow border) or hit F2 while the field has focus.

31.5. Changing the display order of table columns

You can re-arrange the display order of the columns in the data tab using drag & drop. If you want to apply that column
order whenever you display the table data, you can save the column order by right-clicking in the table header and then
using the menu item Save column order. If the column order has not been changed, the menu item is disabled.

The column order will be stored using the fully qualified table name and the current connection's JDBC URL as the
lookup key.

To reset the column order use the menu item Reset column order from the popup menu. This will revert the column
order to the order in which the columns appear in the source table. The saved order will be deleted as well.

31.6. Customize data retrieval

When displaying the data for a table, SQL Workbench/J generates a SELECT statement that will retrieve all rows and
columns from the database. In some cases the data for certain data types cannot be displayed correctly as the JDBC
drivers might not implement a proper "toString()" method that converts the data into a readable format.

You can customize the SELECT statement that is generated by SQL Workbench/J when retrieving table data in the
DbExplorer in the configuration file workbench.settings. For each DBMS you can define an expression for
specific data types that are used when building the SELECT statement.

To configure this, you need to add one line per data type and DBMS to the file workbench.settings:

workbench.db.[dbid].selectexpression.[type]=expression(${column})

When building the SELECT statement, the placeholder ${column} will be replaced with the actual column name.
[dbid] is the DBID of the DBMS for which the replacement should be done.

The whole key (the part to the left of the equal sign) must be in lowercase.

[type] is the datatype of the column without any brackets or parameters: varchar instead of varchar(10), or
number instead of number(10,2)

To convert e.g. the geometry datatype of Postgres to a readable format, one would use the following expression
astext(transform(geo_column,4326)).

To tell the DbExplorer to replace the retrieval of columns of type geometry in PostgreSQL with the above
expression, the following line in workbench.settings is necessary:

workbench.db.postgres.selectexpression.geometry=astext(transform(${column},4326))

For e.g. the table geo_table (id integer, geo_col geometry) SQL Workbench/J will generate the
following SELECT statement:

SELECT id, astext(transform(geo_col,4326))
FROM geo_table

to retrieve the data of that table.

Note that the data of columns that have been "converted" through this mechanism, might not be updateable any more.
If you intend to edit such a column you will have to provide a column alias in order for SQL Workbench/J to generate a
correct UPDATE or INSERT statement.

SQL Workbench/J User's Manual

175

Another example is to replace the retrieval of XML columns. To configure the DbExplorer to convert Oracle's XMLTYPE
a string, the following line in workbench.settings is necessary:

workbench.db.oracle.selectexpression.xmltype=extract(${column}, '/').getClobVal()

To convert DB2's XML type to a string, the following configuration can be used:

workbench.db.db2.selectexpression.xml=xmlserialize(${column} AS CLOB)

The column name (as displayed in the result set) will usually be generated by the DBMS and will most probably not
contain the real column name. In order to see the real column name you can supply a column alias in the configuration.

workbench.db.oracle.selectexpression.xmltype=extract(${column}, '/').getClobVal() AS ${column}

In order for SQL Workbench/J to parse the SQL statement correctly, the AS keyword must be used.

You can check the generated SELECT statement by using the Put SELECT into feature. The statement that is generated
and put into the editor, is the same as the one used for the data retrieval.

The defined expression will also be used for the Search table data feature, when using the server side search. If you
want to search inside the data that is returned by the defined expression you have to make sure that you DBMS supports
the result of that expression as part of a LIKE expression. E.g. for the above Oracle example, SQL Workbench/J will
generate the following WHERE condition:

WHERE to_clob(my_clob_col) LIKE '%searchvalue%'

31.7. Customizing the generation of the table source

SQL Workbench/J re-generates the source of a table based on the information about the table's metadata returned by
the driver. In some cases the driver might not return the correct information, or not all the information that is necessary
to build the correct syntax for the DBMS. In those cases, a SQL query can be configured that can use the built-in
functionality of the DBMS to return a table's definition.

This DBMS specific retrieval of the table source is defined by three properties in workbench.settings. Please
refer to Customize table source retrieval for details.

31.8. View details

When a database VIEW is selected in the object list the right will display the columns for the view, the source and the
data returned by a select from that view.

The data details tab works the same way as the data tab for a table. If the view is updateable (depends on the view
definition and the underlying DBMS) then the data can also be changed within the data tab

The source code is retrieved by customized SQL queries (this is not supported by the JDBC driver). If the source code
of views is not displayed for your DBMS, please contact <support@sql-workbench.net>.

31.9. Procedure tab

The procedure tab will list all stored procedures and functions stored in the current schema. For procedures or functions
returning a result set, the definition of the columns will be displayed as well.

SQL Workbench/J User's Manual

176

To display the procedure's source code SQL Workbench/J uses its own SQL queries. For most popular DBMS systems
the necessary queries are built into the application. If the procedure source is not displayed for your DBMS, please
contact the author.

Functions inside Oracle packages will be listed separately on the left side, but the source code will contain all functions/
procedures from that package.

31.10. Search table data

This tab offers the ability to search for a value in all text columns of all tables which are selected. The results will be
displayed on the right side of that tab. The result will always display the complete row where the search value was
found. Any column that contains the entered value will be highlighted.

The results displayed here are not editable. If you want to modify the results after a search, you have to
use the WbGrepData command

Two different implementations of the search are available: server side and client side.

31.10.1. Server side search

To server side search is enabled by selecting the check box labeled "Server side search".

The value will be used to create a LIKE 'value' restriction for each text column on the selected tables. Therefore
the value should contain a wildcard, otherwise the exact expression will be searched.

You can apply a function to each column as well. This is useful if you want to to do a case insensitive search on Oracle
(Oracles VARCHAR comparison is case sensitive). In the entry field for the column the placeholder col is replaced
with the actual column name during the search. To do a case insensitive search in Oracle, you would enter lower(col)
in the column field and '%test%' in the value field.

The expression in the column field is sent to the DBMS without changes, except the replacement of col with the
current column name. The above example would yield a lower(<column_name>) like '%test%' for each
text column for the selected tables.

The generated SQL statements are logged in the second tab, labeled SQL Statements.

In the resulting tables, SQL Workbench/J tries to highlight those columns which match the criteria. This might not
always work, if you apply a function to the column itself such as to_upper() SQL Workbench/J does not know that
this will result in a case-insensitive search on the database. SQL Workbench/J tries to guess if the given function/value
combination might result in a case insensitive search (especially on a DBMS which does a case sensitive search by
default) but this might not work in all the cases and for all DBMS.

The SELECT statement that is built to display the table's data will list all columns from the table. If the table contains
BLOB columns this might lead to a substantial memory consumption. To avoid loading too many data into memory,
you can check the option "Do not retrieve LOB columns". In that case columns of type CLOB or BLOB will not be
retrieved.

SQL Workbench/J is building a SELECT that "searches" for data using a LIKE expression. Only columns of type CHAR
and VARCHAR are included in the LIKE search, because that is what most DBMS support. If the DBMS you are using
supports LIKE expressions for other datatypes as well, you can configure this datatypes to be included in the search
feature of the DbExplorer.

31.10.2. Client side search

To client side search is enabled by un-checking the check box labeled "Server side search".

SQL Workbench/J User's Manual

177

The client side search retrieves every row from the server, compares the retrieved values for each row and keeps the
rows where at least one column matches the defined search criteria.

As opposed to the server side search, this means that every row from the selected table(s) will be sent from the database
server to the application. For large tables were only a small number of the rows will match the search value this can
increase the processing time substantially.

As the searching is done on the client side, this means that it can also "search" data types that cannot be using for a
LIKE query such as CLOB, DATE, INTEGER.

The search criteria is defined similar to the definition of a filter for a result set. For every column, its value will be
converted to a character representation. The resulting string value will then be compared according to the defined
comparator and the entered search value. If at least one column's value matches, the row will be displayed. The
comparison is always done in a case-insensitively. The contents of BLOB columns will never be searched.

The character representation that is used is based on the default formatting options from the Options Window. This
means that e.g. a DATE column will be compared according to the standard formatting options before the comparison is
done.

The client side search is also available through the WbGrepData command

SQL Workbench/J User's Manual

178

32. Working with the Database Object tree

The Database Object Tree offers a similar functionality as the Database Object Explorer but can be displayed alongside
the SQL editor tabs. The DB Object tree offers a subset of the features the DbExplorer offers. The Database Object Tree
can be displayed using Tools » Show DbTree.

The DB Object tree always uses a separate connection regardless of the configuration of the current
connection profile.

The elements of each part of the tree are only loaded when the node is expanded for the first time.

32.1. Filtering the elements in the tree

The quick filter above the object tree can be used to quickly search for objects with a specific name. The filtering will
only be done on already loaded elements of the tree.

The behavior of the quick filter is the same as the filter in the DbExplorer

32.2. Drag and drop support

32.2.1. Dropping elements into the SQL editor

In general, dropping an element into the editor, will insert the element's name into the editor. There are however two
exceptions to this rule:

• dropping the "Columns" node of the tree will insert a comma separated list of all columns

• dropping a table into a position where no current SQL statement is located, a SELECT statement for the table will be
inserted

• in all other cases, the name of the dropped element will be inserted (e.g. the name of the table, column or index)

32.2.2. Displaying a table's data

To display the data of a table, drag the table node from the Database Object Tree to the result panel of the current SQL
editor. SQL Workbench/J will then generate an appropriate SELECT statement for the table and execute it immediately.

32.3. Finding elements in the tree

When the object tree is displayed, the context menu of the editor contains a new item Find in object tree. This will try to
find and select the identifier at the cursor location in the Object Tree.

If the schema (or catalog) that contains the object has not yet been loaded, it will be loaded in order to be able to display
the current identifier.

32.4. Features available through the context menu

The Database Object Tree offers some of the features that are available in the DbExplorer

SQL Workbench/J User's Manual

179

Export data

This exports the data from the selected table(s). This is identical to the function in the DbExplorer.

Find in object tree

This menu choice is only available when right clicking on a table in the "References" or "Referenced
by" nodes. It will then find and select the referenced (or referencing) table in the DbTree.

Count rows

This will count the rows for each selected table object. The row counts will be shown in parentheses
next to the table name. This is the same functionality as the WbRowCount command.

Put SELECT into

This will put a SELECT statement into the SQL editor to display all data for the selected table. You
can choose into which editor tab the statement will be written. The currently selected editor tab is
displayed in bold

The generated SELECT statement is always inserted into the editor's text at the current cursor
position.

Create empty INSERT

This creates an empty INSERT statement for the currently selected table(s). This is intended for
programmers that want to use the statement inside their code.

The generated SELECT statement is always inserted into the editor's text at the current cursor
position.

Create empty UPDATE

This creates an empty UPDATE statement for the currently selected table(s). This is intended for
programmers that want to use the statement inside their code.

The generated SELECT statement is always inserted into the editor's text at the current cursor
position.

Create default SELECT

This creates a SELECT for the selected table(s) that includes all columns for the table. This feature is
intended for programmers who want to put a SELECT statement into their code.

The generated SELECT statement is always inserted into the editor's text at the current cursor
position.

Create DDL Script

This shows the SQL source for the selected object(s). This is identical to the function in the
DbExplorer.

SQL Workbench/J User's Manual

180

Drop

Drops the selected objects. This is identical to the function in the DbExplorer.

Generate DROP script

This creates a script to DROP the selected object(s) including dependent objects. This is identical to
the function in the DbExplorer.

Delete data

Deletes all rows from the selected table(s) by executing a DELETE FROM table_name; to the
server for each selected table. This is identical to the function in the DbExplorer.

SQL Workbench/J User's Manual

181

33. Common problems

33.1. The driver class was not found

If you get an error "Driver class not registered" or "Driver not found" please check the following
settings:

• Make sure you have specified the correct location of the jar file. Some drivers (e.g. for IBM DB2) may require more
than one jar file.

• Check the spelling of the driver's class name. Remember that it's case sensitive. If you don't know the driver's class
name, simply press the Enter key inside the input field of the jar file location. SQL Workbench/J will then scan the
jar file(s) to find the JDBC driver

33.2. Syntax error when creating stored procedures

When creating a stored procedure (trigger, function) it is necessary to use a delimiter other than the normal semicolon
because SQL Workbench/J does not know if a semicolon inside the stored procedure ends the procedure or simply a
single statement inside the procedure.

Therefor you must use an alternate delimiter when running a DDL statement that contains "embedded" semicolons. For
details please refer to using the alternate delimiter.

33.3. The SQL source code for tables or indexes is incorrect

SQL Workbench/J re-creates the source code for tables and indexes based on the information returned by the JDBC
driver. This does not alway match the original DDL used to create the table or index due to the limited information
available by the JDBC API.

If the DBMS supports a SQL query to retrieve the real (native) source of a table or index, the query can be configured
to be used instead of the generic reverse engineering built into SQL Workbench/J

Please see the chapter Customize table source retrieval for details on how to configure the query.

33.4. Timestamps with timezone information are not displayed correctly

When using databases that support timestamps or time data with a timezone, the display in SQL Workbench/J might not
always be correct. Especially when daylight savings time (DST) is in effect.

This is caused by the handling of time data in Java and is usually not caused by the database, the driver or SQL
Workbench/J

If your time data is not displayed correctly, you might try to explicitely specify the time zone when starting the
application. This is done by passing the system property -Duser.timezone=XYZ to the application, where XYZ is
the time zone where the computer is located that runs SQL Workbench/J

The time zone should be specified relativ to GMT and not with a logical name. If you are in Germany and DST is
active, you need to use -Duser.timezone=GMT+2. Specifying -Duser.timezone=Europe/Berlin does
usually not work.

When using the Windows launcher you have to prefix the paramter with -J to identify it as a parameter for the Java
runtime not for the application.

SQL Workbench/J User's Manual

182

33.5. Some of the dialogs are too small

When using non-default font sizes in the operating system, it can happen that the windows shown in SQL Workbench/J
are sometimes too small and some GUI elements are cut off or not visible at all.

All windows and dialogs can be resized and will remember their size. If GUI controls are not visible or are cut-off
simply resize the window until everything is visible. The next time the dialog is opened, the chose size will be restored.

33.6. Excel export not available

In order to write the proprietary Microsoft Excel format, additional libraries are needed. Please refer to Exporting Excel
files for details.

33.7. Out of memory errors

The memory that is available to the application is limited by the Java virtual machine to ensure that applications don't
use all available memory which could potentially make a system unusable.

If you retrieve large resultsets from the database, you may receive an error message indicating that the application does
not have enough memory to store the data.

Please refer to Increasing the memory for details on how to increase the memory that is available to SQL Workbench/J

33.8. High CPU usage when executing statements

If you experience a high CPU usage when running a SQL statement, this might be caused by a combination of the
graphics driver, the JDK and the Windows® version you are using. This is usually caused by the animated icon which
indicates a running statement (the yellow smiley). This animation can be turned off in Tools » Options See Enable
animated icons for details. A different icon (not animated) will be used if that option is disabled.

33.9. The GUI freezes when displaying menus or context menus

With certain Linux Desktops combined with OpenJDK it has been observed that displaying context menus (by using the
right mouse button) freezes the GUI. Please use the Oracle JDK (or JRE) if this happens.

SQL Workbench/J User's Manual

183

34. Common DBMS problems

34.1. Oracle

34.1.1. No Views or tables visible in the DbExplorer

Since Build 112 it is possible that the DbExplorer does no longer display views or tables if the selected schema
(username) contains an underscore. This is caused by a bug in older Oracle JDBC drivers.

The driver calls used to display the list of tables and views in a specific schema expects a wildcard expression. To avoid
listing the objects for USERX1 when displaying the objects for USER_1 the underscore must be escaped. The driver
will create an expression similar to AND owner LIKE 'USER_1' ESCAPE '\' (which would return tables for
USERA1, USERB1 and so on, including of course USER_1).

The character that is used to escape the wildcards is reported by the driver. SQL Workbench/J sends e.g. the value
USER_1 if the driver reports that a backslash is used to escape wildcards.

However some older Oracle drivers report the wrong escape character, so the value sent to the database results in AND
owner LIKE 'USER_1' ESCAPE '/'. The backslash in the expression is the character reported by the driver,
whereas the forward slash in the expression is the character actually used by the driver.

To fix this problem, the escape character reported by the driver can be overridden by setting a property in
workbench.settings:

workbench.db.oracle.searchstringescape=/

You can also change this property by running

WbSetConfig workbench.db.oracle.searchstringescape=/

This bug was fixed in the 11.2 drivers.

34.1.2. Error: "Stream has already been closed"

Due to a bug in Oracle's JDBC driver, you cannot retrieve columns with the LONG or LONG RAW data type if the
DBMS_OUTPUT package is enabled. In order to be able to display these columns, the support for DBMS_OUTPUT has
to be switched off using the DISABLEOUT command before running a SELECT statement that returns LONG or LONG
RAW columns.

34.1.3. BLOB support is not working properly

SQL Workbench/J supports reading and writing BLOB data in various ways. The implementation relies on standard
JDBC API calls to work properly in the driver. If you experience problems when updating BLOB columns (e.g. using
the enhanced UPDATE, INSERT syntax or the DataPumper) then please check the version of your Oracle JDBC
driver. Only 10.x drivers implement the necessary JDBC functions properly. The version of your driver is reported in
the log file when you make a connection to your Oracle server.

34.1.4. Table and column comments are not displayed

By default Oracle's JDBC driver does not return comments made on columns or tables (COMMENT ON ..). Thus your
comments will not be shown in the database explorer.

To enable the display of column comments, you need to pass the property remarksReporting to the driver.

SQL Workbench/J User's Manual

184

In the profile dialog, click on the Extended Properties button. Add a new property in the following window with the
name remarksReporting and the value true. Now close the dialog by clicking on the OK button.

Turning on this features slows down the retrieval of table information e.g. in the Database Explorer.

When you have comments defined in your Oracle database and use the WbSchemaReport command, then you have to
enable the remarks reporting, otherwise the comments will not show up in the report.

34.1.5. Time for DATE columns is not displayed

A DATE column in Oracle always contains a time as well. If you are not seeing the time (or just 00:00:00) for a date
column but you know there is a different time stored, please enable the option "Oracle DATE as Timestamp" in the
"Data formatting" section of the Options dialog (Tools » Options)

34.1.6. Content of XMLTYPE columns is not displayed

The content of columns with the data type XMLTYPE cannot be displayed by SQL Workbench/J because the Oracle
JDBC driver does not support JDBC's XMLType and returns a proprietary implementation that can only be used with
Oracle's XDB extension classes.

The only way to retrieve and update XMLType columns using SQL Workbench/J is to cast the columns to a CLOB
value e.g. CAST(xml_column AS CLOB) or to_clob(xml_column)

In the DbExplorer you can customize the generated SQL statement to automatically convert the XMLType to a CLOB.
Please refer to the chapter Customize data retrieval in the DbExplorer for details.

Note

34.1.7. Error: "missing mandatory parameter"

When running statements that contain single line comments that are not followed by a space the following
Oracle error may occur: ORA-01009: missing mandatory parameter [SQL State=72000, DB
Errorcode=1009].

--This is a comment
SELECT 42 FROM dual;

When adding a space after the two dashes the statement works:

-- This is a comment
SELECT 42 FROM dual;

This seems to be a problem with old Oracle JDBC drivers (such as the 8.x drivers). It is highly recommend to upgrade
the driver to a more recent version (10.x or 11.x) as they not only fix this problems, but are in general much better than
the old versions.

34.2. MySQL

34.2.1. INFORMATION_SCHEMA tables not displayed in DbExplorer

It seems that the necessary API calls to list the tables of the INFORMATION_SCHEMA database (which is a database,
not a schema - contrary to its name) are not implemented correctly in some versions of the MySQL driver. Currently
only the version 5.1.30 is known to return the list of tables of the INFORMATION_SCHEMA database.

SQL Workbench/J User's Manual

185

34.2.2. "Operation not allowed" error message

In case you receive an error message "Operation not allowed after ResultSet closed" please
upgrade your JDBC driver to a more recent version. This problem was fixed with the MySQL JDBC driver version 3.1.
So upgrading to that or any later version will fix this problem.

34.2.3. Problems with zero dates with MySQL

MySQL allows the user to store invalid dates in the database (0000-00-00). Since version 3.1 of the JDBC driver, the
driver will throw an exception when trying to retrieve such an invalid date. This behavior can be controlled by adding
an extended property to the connection profile. The property should be named zeroDateTimeBehavior. You
can set this value to either convertToNull or to round. For details see http://dev.mysql.com/doc/connector-j/en/
connector-j-reference-configuration-properties.html

To ignore errors

34.2.4. The SQL source for views is not displayed

SQL Workbench/J retrieves the view definition from INFORMATION_SCHEMA.VIEWS. For some unknown reason,
the column VIEW_DEFINITION sometimes does not contain the view definition and the source is not displayed in the
DbExplorer.

To make SQL Workbench/J use MySQL's SHOW CREATE VIEW statement instead of the INFORMATION_SCHEMA,
you can set the property workbench.db.mysql.use.showcreate.view to true, e.g. by running
WbSetConfig workbench.db.mysql.use.showcreate.view=true

34.2.5. No table comments are displayed in the DbExplorer

In order for MySQL's JDBC driver to return table comments, the connection property useInformationSchema
must be set to true.

For details please see this bug report: http://bugs.mysql.com/bug.php?id=65213

34.3. Microsoft SQL Server

34.3.1. The value of DATE columns is not correct

It seems that the version 3.0 of the Microsoft JDBC driver returns the value of DATE columns with a wrong value (two
days less than expected).

Version 4.0 of the Microsoft driver does not show this behavior. If you see wrong values for DATE columns and are
using version 3.0, please upgrade your driver.

34.3.2. Column and table comments are not displayed

SQL Server does not support standard object remarks using COMMENT ON and the JDBC drivers (jTDS and Microsoft's
driver) do not return the so called "extended attributes" through the JDBC API calls. To retrieve table and column
remarks that are defined through the stored procedure sp_addextendedproperty(), SQL Workbench/J must
run additional statements to retrieve the extended properties. As these statements can impact the performance of the
DbExplorer, this is turned off by default.

http://dev.mysql.com/doc/connector-j/en/connector-j-reference-configuration-properties.html
http://dev.mysql.com/doc/connector-j/en/connector-j-reference-configuration-properties.html
http://bugs.mysql.com/bug.php?id=65213

SQL Workbench/J User's Manual

186

To turn the retrieval of the extended properties on, please configure the necessary properties. For details, see the section
Retrieving remarks for Microsoft SQL Server.

34.3.3. Using Windows authentication to connect to a SQL Server

In order to use the integrated Windows authentication (as opposed SQL Server Authentication) the Microsoft JDBC
driver is required. It does not work with the jTDS driver.

When using Windows authentication the JDBC driver will try to load a Windows DLL named sqljdbc_auth.dll.
This DLL either needs to be on the Windows PATH definition or in the directory where SQLWorkbench.exe is
located. You need to make sure that you use the correct "bit" version of the DLL. If you are running a 32bit Java
Runtime you have to use the 32bit DLL. For a 64bit Java Runtime you need to use the 64bit DLL (the architecture of
the server is not relevant).

34.3.4. The Microsoft Driver throws an Exception when using SET SHOWPLAN_ALL

When displaying an execution plan using SET SHOWPLAN_ALL ON and the following error is thrown: The TDS
protocol stream is not valid. Unexpected token TDS_COLMETADATA (0x81). please set
"Max. Rows" to 0 for that SQL panel. Apparently the driver cannot handle showing the execution plan and having the
result limited.

34.3.5. Dealing with locking problems

Microsoft SQL Server (at least up to 2000) does not support concurrent reads and writes to the database very well.
Especially when using DDL statements, this can lead to database locks that can freeze the application. This affects
e.g. the display of the tables in the DbExplorer. As the JDBC driver needs to issue a SELECT statement to retrieve the
table information, this can be blocked by e.g. a non-committed CREATE ... statement as that will lock the system
table(s) that store the meta information about tables and views.

Unfortunately there is no real solution to blocking transactions e.g. between a SQL tab and the DbExplorer. One (highly
discouraged) solution is to run in autocommit mode, the other to have only one connection for all tabs (thus all of them
share the same transaction an the DbExplorer cannot be blocked by a different SQL tab).

The Microsoft JDBC Driver supports a connection property called lockTimeout. It is recommended to set that to
0 (zero) (or a similar low value). If that is done, calls to the driver's API will through an error if they encounter a lock
rather than waiting until the lock is released. The jTDS driver does not support such a property. If you are using the
jTDS driver, you can define a post-connect script that runs SET LOCK_TIMEOUT 0.

34.3.6. Can't start a cloned connection while in manual transaction mode

This error usually occurs in the DbExplorer if an older Microsoft JDBC Driver is used and the connection does not use
autocommit mode. There are three ways to fix this problem:

• Upgrade to a newer Microsoft driver (e.g. the one for SQL Server 2005)

• Enable autocommit in the connection profile

• Add the parameter ;SelectMethod=Cursor to your JDBC URL

This article in Microsoft's Knowledgebase gives more information regarding this problem.

The possible parameters for the SQL Server 2005 driver are listed here: http://msdn2.microsoft.com/en-us/library/
ms378988.aspx

34.3.7. WbExport or WbCopy using a lot of memory

http://www.microsoft.com/sql/technologies/jdbc/default.mspx
http://support.microsoft.com/?scid=kb;en-us;313181&x=9&y=11
http://msdn2.microsoft.com/en-us/library/ms378988.aspx
http://msdn2.microsoft.com/en-us/library/ms378988.aspx

SQL Workbench/J User's Manual

187

The jTDS driver and the Microsoft JDBC driver read the complete result set into memory before returning it to the
calling application. This means that when retrieving data, SQL Workbench/J uses (for a short amount of time) twice as
much memory as really needed. This also means that WbExport or WbCopy will effectively read the entire result into
memory before writing it into the output file. For large exports this us usually not wanted.

This behavior of the drivers can be changed by adding an additional parameter to the JDBC URL that is used to connect
to the database. For the jTDS driver append useCursors=true to the URL, e.g. jdbc:jtds:sqlserver://
localhost:2068;useCursors=true

The URL parameters for the jTDS driver are listed here: http://jtds.sourceforge.net/faq.html#urlFormat

For the Microsoft driver, use the parameter selectMethod=cursor to switch to a cursor based retrieval that does
not buffer all rows within the driver, e.g. jdbc:sqlserver://localhost:2068;selectMethod=cursor

Note that since Version 3.0 of the driver

The URL parameters for the Microsoft driver are listed here: http://msdn2.microsoft.com/en-us/library/ms378988.aspx

34.3.8. Sequences are incremented twice

When a sequence is incremented twice when running SELECT NEXT VALUE FOR MYSEQ; and you are using the
Microsoft JDBC driver with the selectMethod=cursor, remove the selectMethod=cursor option from the
JDBC URL. The sequences will then be incremented correctly.

34.4. IBM DB2

34.4.1. Date values are not displayed

If date values are not displayed (show up as blank or null) in the results, you have to add the parameter ;date
format=iso to your JDBC connection URL. Note the blank between date and format.

See IBM's FAQ for details: http://www-03.ibm.com/systems/i/software/toolbox/faqjdbc.html#faqB5

34.4.2. "Connection closed" errors

When using the DB2 JDBC drivers it is important that the charsets.jar is part of the used JDK (or JRE).
Apparently the DB2 JDBC driver needs this library in order to correctly convert the EBCDIC characterset (used in the
database) into the Unicode encoding that is used by Java. The library charsets.jar is usually included in all multi-
language JDK/JRE installations.

If you experience intermittent "Connection closed" errors when running SQL statements, please verify that
charsets.jar is part of your JDK/JRE installation. This file is usually installed in jre\lib\charsets.jar.

34.4.3. XML columns are not displayed properly in the DbExplorer

The content of columns with the data type XML are not displayed in the DbExplorer (but something like
com.ibm.db2.jcc.am.ie@1cee792 instead) because the driver does not convert them to a character datatype.
To customize the retrieval for those columns, please refer to the chapter Customize data retrieval in the DbExplorer.

When using a JDBC4 driver for DB2 (and Java 6), together with SQL Workbench/J build 107, XML content will be
displayed directly without the need to cast the result.

http://jtds.sourceforge.net/faq.html#urlFormat
http://msdn2.microsoft.com/en-us/library/ms378988.aspx
http://www-03.ibm.com/systems/i/software/toolbox/faqjdbc.html#faqB5

SQL Workbench/J User's Manual

188

34.4.4. No error text is displayed

When running SQL statements in SQL Workbench/J and an error occurs, DB2 does not show a proper error
message. To enable the retrieval of error messages by the driver you have to set the extended connection property
retrieveMessagesFromServerOnGetMessage to true.

The connection properties for the DB2 JDBC driver are documented here:

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.apdv.java.doc/src/tpc/
imjcc_rjvdsprp.html?lang=en
http://www-01.ibm.com/support/knowledgecenter/ssw_ibm_i_72/rzahh/jdbcproperties.htm?lang=en

34.4.5. Displaying column headers instead of column names in result sets.

When running SQL statements in SQL Workbench/J you might want to use the long column headings (created via
LABEL ON) as opposed to the column name. To enable the retrieval of error messages by the driver you have to set the
extended connection property extended metadata to True.

The connection properties for the DB2 JDBC driver are documented here:

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.apdv.java.doc/src/tpc/
imjcc_rjvdsprp.html?lang=en
http://www-01.ibm.com/support/knowledgecenter/ssw_ibm_i_72/rzahh/jdbcproperties.htm?lang=en

34.4.6. Column or table comments are not displayed

The DB2 JDBC driver does not return the column description stored in SYSCOLUMNS.COLUMN_TEXT, or
SYSTABLES.TABLE_TEXT. If you are using these descriptions, you can enable retrieving them (and overwriting
the comments returned by the driver) by setting the following two configuration properties to true (e.g. using
WbSetConfig)

workbench.db.db2i.remarks.columns.use_columntext for column comments
workbench.db.db2i.remarks.tables.use_tabletext for table comments

34.4.7. DB2 commands like REORG cannot be run

REORG, RUNSTATS and other db2 command line commands cannot be be run directly through a JDBC interface
because those are not SQL statements, but DB2 commands. To run such a command within SQL Workbench/J you
have to use the function sysproc.admin_cmd(). To run e.g. a REORG on a table you have to run the following
statement:

call sysproc.admin_cmd('REORG TABLE my_table');

34.5. PostgreSQL

34.5.1. WbExport or WbCopy using a lot of memory

The PostgreSQL JDBC driver defaults to buffer the results obtained from the database in memory before returning them
to the application. This means that when retrieving data, SQL Workbench/J uses (for a short amount of time) twice as
much memory as really needed. This also means that WbExport or WbCopy will effectively read the entire result into
memory before writing it into the output file. For large exports this us usually not wanted.

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.apdv.java.doc/src/tpc/imjcc_rjvdsprp.html?lang=en
http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.apdv.java.doc/src/tpc/imjcc_rjvdsprp.html?lang=en
http://www-01.ibm.com/support/knowledgecenter/ssw_ibm_i_72/rzahh/jdbcproperties.htm?lang=en
http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.apdv.java.doc/src/tpc/imjcc_rjvdsprp.html?lang=en
http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.apdv.java.doc/src/tpc/imjcc_rjvdsprp.html?lang=en
http://www-01.ibm.com/support/knowledgecenter/ssw_ibm_i_72/rzahh/jdbcproperties.htm?lang=en

SQL Workbench/J User's Manual

189

This behavior of the driver can be changed so that the driver uses cursor based retrieval. To do this, the connection
profile must disable the "Autocommit" option, and must define a default fetch size that is greater than zero. A
recommended value is e.g. 10, it might be that higher numbers give a better performance. The number defined for
the fetch size, defines the number of rows the driver keeps in its internal buffer before requesting more rows from the
backend.

More details can be found in the driver's manual: http://jdbc.postgresql.org/documentation/94/query.html#query-with-
cursor

34.6. Sybase SQL Anywhere

34.6.1. Columns with type nvarchar are not displayed properly

The jConnect driver seems to have a problem with nvarchar columns. The data type is not reported properly by the
driver, so the display of the table structure in the DbExplorer will be wrong for those columns.

http://jdbc.postgresql.org/documentation/94/query.html#query-with-cursor
http://jdbc.postgresql.org/documentation/94/query.html#query-with-cursor

SQL Workbench/J User's Manual

190

35. Options dialog

The options dialog enables you to influence the behavior and look of SQL Workbench/J to meet your needs. To open
the options dialog choose Tools » Options.

35.1. General options

Language

With this option you can select in which language the application is shown. The new value will only
be in affect when you restart the application.

Check for updates

With this option you can enable an automatic update check when SQL Workbench/J is started. You
can define the interval in days after which the application should check for updates on the home page.
If a newer version is found on the web site this will be indicated with a little globe in the statusbar.
Clicking on the icon will open your default internet browser with the application's home page.

If you disable this option, you can manually check for updates using the menu Help » Check for
updates....

When SQL Workbench/J performs an update check, it sends the following information as part of the
request to the server:

• The version of SQL Workbench/J you are using

• Whether the check was an automatic check or a manual one

• The interface language selected

• The operating system as reported by your Java installation

• The Java version you are using

Show connect dialog

If this option is enabled, the connect dialog will be shown automatically when the application is
started.

Encrypt passwords

If this option is enabled, the password stored within a connection profile will be encrypted. Whether
the password should be stored at all can be selected in the profile itself.

Using this option only supplies very limited security. As the source code for SQL
Workbench/J is freely available, the algorithm to decrypt the passwords stored in this
way can easily be extracted to retrieve the plain text passwords.

Exit on first connect cancel

If this option is enabled, then the application is closed completely if the initial connect dialog is
canceled.

SQL Workbench/J User's Manual

191

This option is only valid if "Show connect dialog" is selected.

Consolidate script log

Usually SQL Workbench/J reports the success and timings for each statement that is being executed
in the message tab of the current SQL panel. For large scripts this can slow down script execution
dramatically. If this option is enabled, only a summary of the execution is printed once the script has
finished. You can turn off the log during script execution by using the WBFEEDBACK command.

Auto-save connection profiles

If this option is enabled, the connection profiles are automatically saved when closing the connection
dialog using the OK button.

If this option is disabled, the connection profiles are saved when closing the application.

Single page HTML help

If this option is enabled, the HTML help will be shown as a single page in the browser instead of one
page per chapter.

Quick filter for profiles

If this option is enabled, an input field to filter the profiles is displayed above the list of profiles.

Show tab index

If this option is enabled, each editor tab will be shown with its index. You can then select the first 9
tabs by pressing Ctrl-1, Ctrl-2 and so on.

Scroll tabs

This option controls the behavior of the tab display, if more tabs are opened than can be displayed in
the current width of the window.

If this option is enabled, the tabs are always displayed in a single row. If too many tabs are open, the
row can be scrolled to the display the tabs that are not visible.

If this option is disabled, the tabs are displayed in multiple rows, so that all tabs are always visible.

Confirm tab close

If this option is enabled, closing a tab needs to be confirmed, to prevent accidental closing.

Enable animated icons

Enable or disable the use of an animated icons in the SQL editor to indicate a running SQL statement.
It has been reported, that the animated icon does have a severe (negative) impact on the performance
on some computers (depending on JDK/OS/Graphics driver). If you experience a high CPU usage
during the execution of SQL statements, or if you find your SQL statements are running very slow,
try to turn off the usage of the animated icons.

SQL Workbench/J User's Manual

192

Log Level

With this option you can control the level of information written to the application log. The most
verbose level is DEBUG. With ERROR only severe errors (either resulting from running a user
command or from an internal error) are written to the application log.

When using Log4J as the logger, this will change the log level of the root logger.

Configuration file information

At the bottom of the "General options" page, the full filename of the configuration file and the logfile
are listed.

35.2. Editor options

Line ending for DBMS

This property controls the line terminator used by the editor when sending SQL statements to the
database. The value "Platform default" relates to the platform where you run SQL Workbench/J this is
not the platform of the DBMS server.

The editor always uses "unix" line ending internally. If you select a different value for this property,
SQL Workbench/J will convert the SQL statements to use the desired line ending before sending
them to the DBMS. As this can slow down the execution of statements, it is highly recommended to
leave the default setting of Unix line endings. You should only change this, if your DBMS does not
understand the single linefeed character (ASCII value 10) properly.

File format

This property controls the line terminator used when a file is saved by the editor. Changing this
property affects the next save operation.

History size

The number of statements per tab which should be stored in the statement history. Remember that
always the full text of the editor (together with the selection and cursor information) is stored in the
history. If you have large amounts of text in the editor and set this number quite high, be aware of the
memory consumption this might create.

Files in history

If this option is enabled, the content of external files is also stored in the statement history.

Electric scroll

Electric scrolling is the automatic scrolling of the editor when clicking into lines close to the upper or
lower end of the editor window. If you click inside the defined number of lines at the upper or lower
end, then the editor will scroll this line into the center of the visible area. The default is set to 3, which
means that if you click into (visible) line 1,2 or 3 of the editor, this line will be centered in the display.

SQL Workbench/J User's Manual

193

Editor tab width

The number of spaces that are assumed for the TAB character.

Additional word characters

The editor recognizes character sequences that consist of letters and characters only as "words". This
influences the way word by word jumping is done, or when selecting text using a doubleclick. Every
character that is entered for this option is considered a "word" character and thus does not mark a
word boundary.

By putting e.g. an underscore into this field, the text MY_TABLE is recognized as a single word
instead of two words (which is the default).

Insert closing brackets for

To enable auto-completion of brackets, enter pairs of characters that should automatically be "closed",
e.g. ()'' will automatically insert a closing bracket when an opening bracket is typed. To auto-
complete quote characters enter two quotes.

To disable automatic closing of brackets enter nothing in this input field.

Right click moves cursor

Normally a right click in the SQL editor does not change the location of the cursor (caret). If this
option is checked, then a right click will also change the caret's location (to where the mouse cursor is
located)

Store last directory in workspace

If this option is enabled, the directory from the last opened file is stored in the workspace of the
current profile, not globally. If this option is unchecked, the last directory will be stored globally and
will be used for all connections.

Current directory follows active file

If this option is enabled, the file open dialog will default to the directory of the current file in the
editor. If no file is loaded in the editor, the directory that is defined through the "Default directory"
option will be selected.

35.3. SQL Excecution options

Error prompt for scripts

This options defines what kind of dialog is shown when an error occurs during script execution. The
dialog always offers the choice to ignore the error, ignore all subsequent errors or to cancel the script
execution.

The following options are available:

• Simple prompt - it shows only the statement number that failed.

• Include error message - this includes the actual error message from the DBMS (this is the default)

SQL Workbench/J User's Manual

194

• Show statement and allow retry - this includes the error message and the complete SQL statement
that failed. It allows to edit and re-submit the statement.

Alternate Delimiter

This options defines the default alternate delimiter. You can override this default in the connection
profile, to use different delimiters for different DBMS. For details see using the alternate delimiter

Highlight current statement

When running several statements (e.g. by using "Execute all") this option will highlight the current
statement. The editor will be scrolled to make sure the currently executed statement is visible.

Retain current statement highlight

If "Highlight current statement" is enabled and this option is turned on, the highlighting will be kept
once execution has finished.

Highlight errors

If "Highlight errors" is enabled then the statement that generated an error is highlighted after
execution.

Always allow "Execute Selected"

If this option is turned off, then SQL » Execute Selected will only work if text is selected in the
editor. If this option is turned on and no text is selected, the complete content of the editor will be
executed.

Auto advance to next statement

If this option is enabled, then the cursor will automatically jump to the next statement in the script,
when you execute a single statement using Ctrl-Enter ("Run current statement"). This can also be
toggled through the menu SQL » Settings » Auto advance to next

For more information on how you can execute statements in the editor, please refer to Executing
Statements

Allow editing while executing

When running a statement, the editor is set to read-only in order to allow a consistent statement
highlighting. When this option is turned on, the text in the editor may be modified even if a statement
is running. If the text in the editor is modified during execution, statement and error highlighting will
not be done any more.

Allow empty lines as statement delimiter

When analysing statements in the editor, it is assumed that individual statements are separated with
a semicolon. This property controls if an empty line delimits a statement as well. This setting will be
used to detect the current statement for auto-completion and when using Execute current inside the
editor.

SQL Workbench/J User's Manual

195

This does not influence the behavior when running scripts in batch mode or when using
the WbInclude command.

Use the statement in the current line

When this option is enabled, the line of the cursor position determines the "current statement" rather
than the cursor position itself when using Execute current [46].

35.4. Macro options

Macro expansion key

This defines the key combination that triggers the detection of expandable macros.

Save window settings in workspace

If this option is enabled, the current position and the expaned macro groups of the macro popup
window are stored in the current workspace. It this option is disabled, these settings are saved
globally.

Close window with ESC

If this option is enabled the macro popup window can be closed using the ESC key.

Execute macro with Enter

If this option is enabled the currently selected macro can be run by hitting the Enter key.

35.5. Bookmark options

Also use @WbResult for bookmarks

By default only locations marked with @WbTag are included in the list of bookmarks. When this
option is enabled, locations that are marked with @WbResult are also included in the bookmark list.

Use procedure/function names as bookmarks

If this is enabled SQL Workbench/J will also the names of procedures or functions for which a
CREATE statement is present in the editor as a bookmark.

Include parameter names for procedures and functions

When including procedure and function names in the bookmarks, only the datatype of the parameters
are shown in the bookmark list. If this option is enabled the parameter names (if available) are also
shown.

SQL Workbench/J User's Manual

196

Remember column widths

If this is enabled, the width of the columns in the bookmark window is not resized to match the
displayed value, but rather the last with is remembered.

Remember sort order

If this is enabled, the sort order of the bookmark list is restored the next time the bookmark window is
displayed.

35.6. Editor colors

Current line color

If you want to highlight the line in which the cursor is located, specify the color for the highlighting.
To disable the highlight for the current line, simply "remove" the color selection by clicking on the
remove button.

Selected text

The color that is used to highlight selected text.

Error highlight color

When a statement is not executed correctly (and the DBMS signals an error) it is highlighted in the
editor. With this option you can select the color that is used to highlight the incorrect statement.

Syntax highlighting colors

You can change the colors for the different types of keywords in the editor.

35.7. Font settings

Editor font

The font that is used in the SQL editor. This font is also used when displaying the SQL source for
tables and other database objects in the DbExplorer.

Data font

The font that is used to display result sets. This includes the object list and results in the DbExplorer.

Message font

The font that is used in the message pane of the SQL window.

Standard font

The standard font that is used for menus, lables, buttons etc.

SQL Workbench/J User's Manual

197

35.8. Auto-completion options

Paste completion in

With this option you can select how the selected object name from the code completion popup is
pasted into the editor. As is means, that the values will be inserted into the editor as it was retrieved
from the database. This option will also be used when SQL statements are generated internally (e.g.
for updating the result set or when you export/copy data as SQL statements)

Sort pasted columns by

When selecting to paste all (or several columns) from the popup window, you can select with this
option, in which order the columns should be written into the editor.

Close completion with search

When using the quicksearch feature in the code completion this option controls the behavior when
hitting the ESC key. If this option is enabled, the ESC key will also close the popup window with the
available choices. If this option is disabled, the ESC key will only close the quicksearch input field.

Sort entries in popup

If this is enabled, columns are sorted alphabetically in the popup. If not, they are listed in the order as
they are returned by the the database.

Quick search matches anywhere

If this option is enabled, the typed characters match anywhere in the object name. If this option is
disabled, the object name must start with the entered search value.

Filter by quicksearch

When this option is enabled, only those entries are shown in the popup that match the entered values
in the quick search.

Prefer USING operator

If this option is enabled, the JOIN completion generates a USING clause instead of an ON clause to
join the tables. If there are no columns with identical names, a join with an ON operator is generated.

Always use parentheses

If this option is enabled, JOIN completion will generated redundant parentheses around the join
condition for the ON operator.

35.9. Workspace options

Auto-Save workspace

If this option is enabled, the current workspace is saved each time you run a SQL statement.

SQL Workbench/J User's Manual

198

Create workspace backup

If this option is enabled the current workspace file will be backed up, before saving the new
workspace. You can keep multiple versions of the workspace by supplying a number in the "Max.
Backups" input field. If a value > 1 is entered, saving the workspace will create a new "version" of
the backup file. The versions will have the version number appended (e.g. testdata.wksp.1,
testdata.wksp.2 and so on). The most recent version is the one with the highest number.

Workspace backup directory

By default the backups for the workspaces are stored in the same directory as the workspace file
itself. If you want to keep the (versioned) backups in a separate directory, you can specify it here.

If you specify a relative directory, it will be relative to the config directory.

Remember open files in workspace

You can customize how external files (that have been loaded using File » Open) are remembered in
the workspace. You can select three different options:

Content and
filename

When this option is selected, the filename that is loaded in the editor tab will be stored
in the workspace. The next time the workspace is loaded the file is opened as well. This
is the default setting

Content only When this option is selected, only the content of the editor tab is save (just like any
other editor tab), but the link to the filename is removed. The next time the workspace
is loaded, the file will not be opened.

Nothing Neither the content, nor the filename will be saved. The next time th workspace is
loaded, the editor tab will be empty.

35.10. Options for displaying data

Show selection summary in statusbar

If this option is enabled the number of selected rows in the result will be displayed in the status bar.

If you have a single numeric column selected (by holding down the Alt key while selecting with the
mouse), the status bar will display the sum of the selected values.

Use table name for result tabs

If this option is enabled, the name of a result tab is derived from the SELECT that was used to
generate the result. The query is analyzed and the first table name mentioned in the FROM clause will
be used for the name of the result.

The table name will not be used when the @WbResult annotation is also specified for the query.

Retrieve column remarks for queries

If this option is enabled, the remarks defined for table columns in a result set are retrieved and shown
as a tool tip. As this requires additional overhead after processing a query, it can be disabled for
performance reasons.

SQL Workbench/J User's Manual

199

Show max. rows warning

If this option is enabled the result tab will show a warning sign if the limit defined by the max. rows
setting is reached, indicating that the result might be incomplete.

Show row numbers

If this option is enabled the row numbers for result sets are shown at the left hand side of the result.

Show tooltip warning

If this option is enabled, a tooltip indicating that the maximum number of rows has been reached is
shown for the result tab.

Bold header

If this option is enabled, the name of the columns in the result is shown with a bold font, instead of
the regular data font.

Default max. Rows

When adding a SQL panel, this number will be used as a default for the max. rows value for the new
panel.

Default SQL query

If this option is enabled, the query that generated a result is shown right above the result grid.

NULL string

The specified value will be displayed instead of NULL values in the result of a SQL statement.

Append results

This option defines the default behavior for appending results [49] when a new editor tab is opened.

Number alignment

This controls the alignment of numbers in the result grid.

Result tab tooltip

This options configures the tooltip that is shown when the mouse is hovering over a result tab.

Sort Locale

When you sort the result set, characters values will be sorted case-sensitive by default. This is caused
by the compareTo() method available in the Java environment which puts lower case characters
in front of upper case characters when sorting. With the "Sort Locale" option you can select which
language rules should be applied while sorting. Note that sorting with a locale is slower than using the
"Default" setting.

SQL Workbench/J User's Manual

200

35.10.1. Column width settings

Automatically adjust column widths

If this option is enabled, the widths of the result set columns are automatically adjusted to fit the
largest value (respecting the min. and max. size settings) after retrieving data. Note that you can
manually optimize the column widths using View » Optimize width for all columns.

Adjust to column headers

When calculating the optimal width for a column (either manually or if "Auto adjust column widths"
is enabled, then the column's label will be included in the width calculation if this option is enabled. If
this option is disabled, and the column contains very short values, the column width could be smaller
than the column's label.

This option is also used when manually optimizing the column width,

Max. column width

When the initial display size of a column is calculated, or if you optimize the column widths to fit
the actual data, columns will not exceed this width. This is useful when displaying large character
columns.

Min. column width

When the initial display size of a column is calculated, or if you optimize the column widths to fit the
actual data, columns will not exceed this width.

Displaying multi-line values

SQL Workbench/J uses a special display component for the contents of CLOB columns that is capable
of displaying multiple lines. This component honors newlines and linefeeds in the data retrieved
from the database and is capable of using word wrapping for long lines (even if no newlines are
embedded).

By default only CLOB are considered to be able to contain multiple lines, so VARCHAR columns are
usually not treated as multi-line columns. If your database stores text in VARCHAR columns that
contains line breaks, you can define a threshold for the length of the column. Any column that is
defined with a higher value will be displayed with the multiline component.

The default value of 250 means that a VARCHAR(250) column will be displayed with the multi
line renderer. A VARCHAR(210) will be displayed in a single line. Note that this limit refers to the
defined length of the column, not the actual length of the data.

Displaying data using the multi line component is slower than using the standard (single line)
component.

The feature Adjust row height only works with multi-line columns.

35.10.2. Row height settings

Automatically adjust row height

If this option is enabled, the height of each column is automatically adjusted after data retrieval to
display as many lines of the column values (for character columns) as possible. Note that you can
manually optimize the row height using View » Optimize row height.

SQL Workbench/J User's Manual

201

Not every (character) column is displayed in a manner that multiple lines will be displayed. The
default setting is to always display CLOB columns as multi line. VARCHAR (and CHAR) columns will
only be displayed in multi line mode if they can hold more than 250 characters. This limit can be
changed.

Allow row height resizing

If this option is enabled, you can manually adjust the height of each row using the mouse. This option
does not need to be enabled in order to (automatically) optimize the row height.

Max. number of lines

When calculating the optimal height for each row, the number of lines defined with this option will
never be exceeded.

35.11. Options for formatting data

Date, timestamp and time formats

Define the format for displaying date, date/time (timestamp) and time columns in the result set. For
details on the format of this option, please refer to the documentation of the SimpleDateFormat
class. This format is also used when parsing input for date or timestamp fields, so if you enter a date
while editing the data, make sure you enter it the same way as defined with this option.

Here is an overview of the letters and their meaning that can be used to format the date and timestamp
values. Be aware that case matters!

Letter Description

G Era designator (Text, e.g. AD)

y Year (Number)

M Month in year (Number)

w Week in year (Number)

W Week in month (Number)

D Day in year (Number)

d Day in month (Number)

F Day of week in month (Number)

E Day in week (Text)

a AM/PM marker

H Hour in day (0-23)

k Hour in day (1-24)

K Hour in am/pm (0-11)

h Hour in am/pm (1-12)

m Minute in hour

s Second in minute

S Milliseconds

z General time zone (e.g. Pacific Standard Time; PST; GMT-08:00)

Z RFC 822 time zone (e.g. -0800)

http://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html

SQL Workbench/J User's Manual

202

Oracle DATE as TIMESTAMP

The Oracle DATE datatype includes the time as well. But the JDBC driver does not retrieve the
time part of a DATE column, so when retrieving DATE values, this would remove the time stored
in the database. If this option is enabled, SQL Workbench/J will treat Oracle's DATE columns as
TIMESTAMP columns, thus preserving the time information.

Note that the Oracle 12.x drivers don't allow to switch this off. If if this parameter is unchecked the
Oracle 12.x driver will return values from DATE columns as timestamps.

Decimal symbol

The character which is used as the decimal separator when displaying numbers.

Decimal digits

Define the maximum number of digits which will be displayed for numeric columns. This only affects
the display of the number, not the storage or retrieval. Internally they are still stored as the DBMS
returned them. To see the internal value, leave the mouse cursor over the cell. The tool tip which is
displayed will contain the number as it was returned by the JDBC driver. When exporting data or
copying it to the clipboard, the real value will be used.

If this value is set to 0 (zero) values will be display with as many digits as available.

35.12. Data display colors

Alternate row colors

If this color is defined, the rows in the data table will be displayed with alternating background color.

Color for NULL values

If a color is defined, NULL values will be highlighted with the selected colors in the result set.

35.13. Options for data editing

Confirm result set updates

When this option is enabled, the statements which are sent to the database when saving changes
to result set table, are displayed before execution. The update can be cancelled at that point if the
statements are not correct. The generated statements can also be saved to a file from that window.

The statement(s) that are displayed in the confirmation window can not be changed!

Confirm discarding changed results

When running a statement that would replace a result that has changes that are not saved to the
database, you will be prompted whether you want to cancel the current operation that would discard
those changes.

SQL Workbench/J User's Manual

203

This applies to statements run in the editor, as well as to changes done in the Data tab of the
DbExplorer.

You will not be prompted when running statements in the editor, when the option Append results [49]
is enabled.

Highlight required fields

When editing data either in the result set or in the data tab of the DbExplorer, fields that are set to
NOT NULL in the underlying table, will be displayed with a different background color if this option
is selected.

Color for required fields

If required fields are highlighted during editing, this option defines the background color that is used.

Default PK Map

This property defines a mapping file for primary key columns. The information from that file is
read whenever the primary keys for a table of cannot be obtained from the database. For a detailed
description on how to define extra primary key columns, please refer to the WbDefinePk command.

Single record dialog

When displaying data in the Single record dialog you can customize the width for the input fields, and
the default height for multiline columns.

35.14. DbExplorer options

35.14.1. General options

DB Explorer as Tab

The Database Explorer can either be displayed as a separate window or inside the main window as
a another tab. If this option is selected, the Db Explorer will be displayed inside the main window.
If the option Retrieve DB Explorer is checked as well, the current database scheme will be retrieved
upon starting SQL Workbench/J

Automatically retrieve dependency tree

If this option is enabled, the tree display in the "References" and "Referenced by" tabs will
automatically be loaded when the list of foreign keys is loaded. If this option is disabled, loading of
the tree display must be started manually by clicking on the "reload" button.

Show trigger panel

By default triggers are shown only in the details of a table. If the option "Show trigger panel" is
selected, an additional panel will be displayed in the DbExplorer that displays all triggers in the
database independently of their table.

Focus to data panel

When this option is selected, the focus inside the DbExplorer will be set to the data panel, after an
object in the list has been selected and the data panel is visible.

SQL Workbench/J User's Manual

204

Focus to source panel

When this option is selected, the focus inside the DbExplorer will be set to the object's source panel,
after an object in the list has been selected and the source panel is visible.

Show focus

When this option is selected, a rectangle indicating the currently focused panel will be displayed, to
indicate the component that will received keystrokes e.g. shortcuts such as Ctrl-R.

Object details tabs

With this drop down you can select the position of the details tabs (Columns, Source, Data etc).

35.14.2. Object list options

Automatically retrieve objects

If this option is enabled, the contents of the database schema is retrieved when the DB Explorer is
displayed. If this option is not checked, either the Refresh button or selecting a schema or table type
will load the list.

Allow table altering

If this option is enabled, column definitions of a table can directly be altered by editing them inside
the "Columns" tab. It also allows to directly change the name of a table in the table list.

Remember object type

The list of objects can be filtered with the drop down. If the option "Remember object type" is
selected, the current object type will be stored in the workspace of the current connection, and will be
restored the next time.

Default object type

If "Remember object type" is not enabled, you can define a default object type that is selected in the
drop down when the DbExplorer is displayed initially.

Quick filter options

The following configuration options of the quick filter are also used for the quick filter in the
Database Objects Tree.

Use RegEx in Quickfilter

If this option is enabled, the expression entered in the quick filter of the
DbExplorer's table list is used as a regular expression (rather than a "SQL"
Expression) to filter the list.

Partial match

If this option is enabled, then any text that is typed into the quick filter will be
matched anywhere in the object name. It is equivalent to typing *foo* into the
quick filter. If this option is enabled and a wildcard is part of the value, then only
that wildcard is used. Using foo* for the filter while this option is enabled, shows
all objects that start with foo.

SQL Workbench/J User's Manual

205

This also enables filtering for multiple values, separated by comma. Entering
foo,bar in the quick filter will show all objects that contain either foo or bar.

This option is only available when the use of regular expressions in the quick filter
is disabled.

Filter while typing

If this option is enabled, the filter expression is applied while you type. In this case,
the "Filter" button does not need to be clicked in order to apply the filter expression.

35.14.3. SQL Generation options

Generate PK constraint name

When displaying the SQL source for a table, a name will be generated for primary key constraint if
the current constraint has no name or a system generated name.

System generated names are identified using a regular expression that can be configured.

If this option is selected, the generated SQL will not reflect the real statement that was used to create
the table!

Generate table grants

If this option is enabled the generated table source will contain any table grants that have been
defined.

Generate DROP statement

If this option is enabled the generated table source will start with the appropriate DROP statement.

35.14.4. Data display options

Remember sort column

When this option is selected, the sort column in the data display of the DbExplorer will be restored
after reloading the table data.

Remember column order

When you reorder the column in the data display of a table, enabling this option will automatically
store the new column order and apply it the next time the table data is displayed.

Apply sort order as ORDER BY

If the table data was sorted by clicking on one of the columns, reloading the data will use an
appropriate ORDER BY clause for the data retrieval. This is useful if not all rows were displayed
in the data panel due to a max. row limit and you want the first rows displayed based on the current
column sort.

35.15. Window Title

The title bar of the main window displays displays information about the current connection, workspace and editor file.
Some of these elements can be enabled or disabled with the options on this page.

SQL Workbench/J User's Manual

206

Application name at end

If this option is enabled, the Application name will be put at the end of the window title.

Show Workspace name

If this option is enabled, the currently loaded workspace name will be displayed in the main window's
title.

Show Profile Group

If this option is enabled, the group of the current connection profile will be displayed in the main
window's title. The name of the current connection profile will always be shown.

Enclose Group With

If you select to display the current profile's group, you can select a pair of characters to put around the
group name.

Separator

If you select to display the current profile's name and group, you can select the character that
separates the two names.

Editor Filename

If the current editor tab contains an external file, you can choose if and which information about the
file should be displayed in the window title. You can display nothing, only the filename or the full
path information about the current file. The information will be displayed behind the current profile
and workspace name.

35.16. SQL Formatting

These options influence the behavior of the internal SQL Formatter when reformatting a SQL statement in the editor.

Max. length for sub-select

When the SQL formatter hits a sub-SELECT while parsing it will not reformat any statement which is
shorter then the length specified with this option, i.e. any sub-SELECT shorter then this value will be
formatted as one single statement without line breaks or indention. See SQL Formatter for details on
how the SQL formatting works.

Columns in SELECT

This property defines the number of columns the formatter puts in on line when formatting a SELECT
statement. The default of 1 (one) will put each column into a separate line:

SELECT p.name,
 p.firstname,
 a.city,
 a.zip

SQL Workbench/J User's Manual

207

FROM person p
 JOIN address a ON p.person_id = a.person_id;

If this is set to 2, this would result in the following formatted SELECT:

SELECT p.name, p.firstname,
 a.city, a.zip
FROM person p
 JOIN address a ON p.person_id = a.person_id;

The above example would list all columns in a single line, if this option is set to 4 (or a higher value):

SELECT p.name, p.firstname, a.city, a.zip
FROM person p
 JOIN address a ON p.person_id = a.person_id;

Columns in INSERT

This property defines the number of columns the formatter puts in on line when formatting an
INSERT statement. A value of one will list each column in a separate line in the INSERT part and
the VALUES part

INSERT INTO PERSON
(
 id,
 firstname,
 lastname
)
VALUES
(
 42,
 'Arthur',
 'Dent'
);

When setting this value to 2, the above example would be formatted as follows:

INSERT INTO PERSON
 (id, firstname,
 lastname)
VALUES
 (42, 'Arthur',
 'Dent');

Columns in UPDATE

This property defines the number of columns the formatter puts in on line when formatting an
UPDATE statement. A value of 1 (one) will put each column into a separate line:

UPDATE person
 SET firstname = 'Arthur',
 lastname = 'Dent'

SQL Workbench/J User's Manual

208

WHERE id = 42;

With a value of 2, the above example would be formatted as follows:

UPDATE person
 SET firstname = 'Arthur', lastname = 'Dent'
WHERE id = 42;

Keywords

This option defines if standard SQL keywords are generated in upper case, lower case or left
unchanged.

Identifiers

This option defines if identifiers (table names, column names, ...) are generated in upper case, lower
case or left unchanged.

Functions

This option defines if the names of SQL functions are generated in upper case, lower case or left
unchanged. This does not apply to user-written functions, only standard functions available for the
current DBMS.

JOIN wrapping

This option controls how conditions for JOIN operators are generated

Never

The JOIN condition is always kept on a single line:

SELECT *
FROM person p
 JOIN address a ON p.person_id = a.person_id;

Always

the JOIN condition is always written on a new line:

SELECT *
FROM person p
 JOIN address a
 ON p.person_id = a.person_id;

Multiple conditions

the JOIN condition is generated on multiple lines only if the join involves more than
one condition:

SELECT *
FROM person p
 JOIN address a ON p.person_id = a.person_id;
 JOIN address_details ad
 ON ad.address_id = a.address_id

SQL Workbench/J User's Manual

209

 AND ad.person_id = a.person_id;

Space after comma for IN lists

If this option is selected, a space is added after the comma inside an IN list.

Comma after line break

If this option is enabled, the commas inside the SELECT list are put on the start of the next line, rather
than on same line as the last column.

If this option is disabled a SELECT statement will be formatted like this:

SELECT id,
 lastname,
 firstname
FROM person;

If this option is enabled the above statement will be formatted like this:

SELECT id
 ,lastname
 ,firstname
FROM person;

Space after a comma with line break

This option is only available is "Comma after line break" is enabled. In that case it controls if a space
character is inserted after the comma.

Quoted elements per line

This option is used when changing the selected text into elements suitable for an IN list using SQL »
Create SQL List. The number of values that are kept on a single line is controlled with this option.

Other elements per line

This option defines how many values will be put into a single line when creating non-quoted elements
using SQL » Create non-char SQL List.

35.17. External SQL Formatter

Use of the external formatter

When formatting a SQL statement, SQL Workbench/J first looks if a formatter for the current DBMS is defined and
active. If a formatter is found, that is used. If no formatter for the current DBMS is found, and the "Default" external
formatter is active, that is used. If no active external formatter is found, the internal formatter is used.

Executable

This is the full path to the formatter's program

SQL Workbench/J User's Manual

210

Command line

The command line configures the parameters passed to the formatter. The input file for the formatter
can be specified by using the placeholder ${wbin}. If no input file is specified on the command
line, the SQL statement will be passed through stdin. If the formatter writes the output to a file, the
placeholder ${wbout} can be used in the command line. If no output file is specified the result will
be read from stdout of the process.

Supports multiple statements

If this option is enabled, SQL Workbench/J send the selected text that should be formatted as a
single input to the formatter. If this option is disabled, SQL Workbench/J will split up the text to be
formatted and send each statement seperately to the formatter.

Enabled

This option can be used to turn of the usage of a formatter without deleting the definition.

35.18. SQL Generation

Format UPDATEs

If formatting of UPDATE statements is enabled, generated UPDATE statements are formatted using
the SQL formatter before they are displayed.

Format INSERTs

If formatting of INSERT is enabled, the way they generated INSERT statements are formatted using
the SQL formatter before they are displayed.

Format DELETEs

If formatting of DELETE is enabled, the way they generated DELETE statements are formatted using
the SQL formatter before they are displayed.

Date literals for clipboard

Defines the date literal format to be used when copying data as SQL statements to the clipboard. For
a detailed description of the different formats please refer to the WbExport description. This option
does not influence the default format used by the WbExport command.

When you copy data as "Text" (tab-separated) to the clipboard, the date and timestamp
format from the general options is used.

Date literals for WbExport

Defines the date literal format to be used for the WbExport command. The value of this option is used
if the -sqlDateLiterals switch is not supplied when running WbExport. This default value is
reported when WbExport is executed without parameters.

SQL Workbench/J User's Manual

211

Date literals for WbDataDiff

Defines the date literal format to be used for the WbDataDiff command. The value of this option is
used if the -sqlDateLiterals switch is not supplied when running WbDataDiff. This default
value is reported when WbDataDiff is executed without parameters.

Include owner in export

This setting controls whether SQL Workbench/J uses the owner (schema) when creating SQL scripts
during exporting data (through WbExport or "Save as"). When this option is selected, the usage of
the schema depends on the ignore schema setting that controls ignoring certain schemas for specific
DBMS. When this is option is not selected, the schema/owner will never be used for SQL scripts.

Include empty comments

By default the DbExplorer will not generate the SQL to create empty comments (tables, views,
columns,...). If this option is enabled then a corresponding SQL statement to define a comment with
an empty string will be generated. If a comment is NULL comments will never be generated.

Ignore identity and autoincrement columns for INSERTs

If this option is enabled, generated INSERT statements (e.g. when editing data) will not contain
identity or autoincrement columns. When using WbExport to create a SQL script, this can be
controlled independently from the global option.

35.19. External tools

On this page, you can define external tools (programs). Currently the only place where this is used, is in the BLOB info
dialog, to open the BLOB data with one of the defined external tools.

This could be a program to display images, OpenOffice to display office documents or a text editor to display text files.

If the tool needs additional parameters (e.g. to select a hex editing mode for a text editor), they have to be entered in the
"Parameters" field. Do not add parameters to the definition of the executable.

35.20. Look and Feel

If you want to use additional Look and Feels that are not part of the JDK, you can specify them here.

A Look And Feel definition consists of a name, the class name to be used and the location of the JAR file that provides
the look and feel implementation. The class name that has to be used should be available in the documentation of
the look and feel of your choice. The name is SQL Workbench/J internal and is only used when displaying the list of
available Look and Feels.

The current look and feel is only changed when you click on the Make current button. Simply selecting a
different entry in the list on the left side will not change the look and feel.

When you switch the current Look & Feel, you will need to restart the application to activate the new look and feel.
Note that if you switch the current Look & Feel it will be changed, regardless whether you close the options dialog
using Cancel or OK.

http://www.openoffice.org

SQL Workbench/J User's Manual

212

36. Configuring keyboard shortcuts

You can configure the keyboard shortcut to execute a specific action (=menu item) in the dialog which is displayed
when you select Tools » Configure shortcuts.... The dialog lists the available actions together with their configured
shortcut and their default shortcut.

36.1. Assign a shortcut to an action

To assign a (new) keyboard combination for a specific action, select (highlight) the action in the list and click on the
Assign button. A small window will pop up, where you can press the key combination which you would like to assign
to that action. Note that only F-Keys (F1, F2, ...) can be used without a modifier (Shift, Control, Alt). All other keys
need be pressed together with one of the modifier keys.

After you have entered the desired keyboard shortcut, press the OK button. If the shortcut is already assigned to a
different action, you will be prompted, if you want to override that definition. If you select to overwrite the shortcut for
the other action, that action will then have no shortcut assigned

36.2. Removing a shortcut from an action

To remove a shortcut completely from an action, select (highlight) that action, and click on the Clear button. Once the
shortcut has been cleared, the action is no longer accessible through a shortcut (only through the menu).

36.3. Reset to defaults

If you want to reset the shortcut for a single action to its default, select (highlight) the action in the list, and click on the
Reset button. To reset all shortcuts click on the Reset all button.

SQL Workbench/J User's Manual

213

37. Advanced configuration options

This section describes the additional options for SQL Workbench/J which are not (yet) available in the options dialog.

The name of the setting refers to the entry in the file workbench.settings which is located in the configuration
directory. Not all listed properties will be present in workbench.settings. In this case, simply create a new line
with the property name and the value as described here. The position where you add this entry does not matter.

You can also change the values for these properties while the application is running by using the command
WbSetConfig.

Every property can also be specified on the command line when starting SQL Workbench/J by setting a
system property with that name using the -Dworkbench.property=value switch when starting the
application using the java command directly.

You can edit the file using a text editor. In that case you must close the application before editing the file, otherwise
your changes will be overwritten when the application is closed.

You can also change any property using the SQL Workbench/J command WbSetConfig. For most of the parameters the
change will be in effect immediately. For some you will still need to restart the application or at least re-connect to the
database.

37.1. DBID

DBMS specific settings are controlled through properties that contain a DBMS specific value, called the the DBID. This
DBID is displayed in the connection info dialog (right click on the connection URL in the main window, then choose
"Connection Info").

The DBID is also reported in the log file:

INFO 15.08.2014 10:24:42 Using DBID=postgresql

If the description for a property in this chapter refers to the "DBID", then this value has to be used.

If the DBID is part of a property key this will be referred to as [dbid] in this chapter.

When using WbSetConfig you can use the value [dbid] inside the property name and it will get
replaced with the current DBID automatically. The following command changes the property named
workbench.db.postgresql.ddlneedscommit if the current connection is against a PostgreSQL database:

WbSetConfig workbench.db.[dbid].ddlneedscommit=true

37.2. GUI related settings

Showing accelerator in menu

Property: workbench.gui.showmnemonics

Possible values: true, false

Usually the mnemonic (aka. Accelerator) for a menu item is not shown under Windows 2000 or later. It will only be
shown, when you press the ALT key. With this settings, this JDK behaviour can be controlled.

SQL Workbench/J User's Manual

214

Default: true

Controlling the type of print dialog

Property: workbench.print.nativepagedialog

Possible values: true, false

When printing the contents of a table, this settings controls the type of print dialog to be used. The default setting will
open the native print dialog of the operating system. If you experience problems when trying to print, set this property
to false. SQL Workbench/J will then open a cross-platform print dialog.

Default value: true

37.3. Editor related settings

Define the default name for new tabs

Property: workbench.gui.tabs.defaultlabel

When adding a new editor tab, the value of this property will be used to set the new tab's title.

Include Oracle public synonyms in auto-completion of tables

Property: workbench.editor.autocompletion.oracle.public_synonyms

Possible values: true, false

When using auto completion for table columns and table names, Oracle's public synonyms are not included by default.
This has two reasons: first, the author believes that public synonyms shouldn't be used (it's just as bad as global
variables in programming) and second, Oracle defines a huge number of public synonyms that would make the popup
with all available tables very long and hard to use. Setting this property to true, will include public synonyms in the
popup. Please refer to filtering synonyms for details on how to filter out unwanted synonyms from this list.

Default value: false

Set the modifier key for rectangular selections in the editor

Property: workbench.editor.rectselection.modifier

These properties control the modifier key that needs to be pressed to enable rectangular selections in the editor. Possible
values are alt for setting the Alt key as the modifier, or ctrl for setting the Ctrl key as the modifier.

Default value: alt

Default file encoding

Property: workbench.file.encoding

Several internal commands use an encoding when writing external text files (e.g. WbExport). If no encoding is
specified for those commands, the default platform encoding as reported by the Java runtime system is used. You can
overwrite the default encoding that Java assumes by setting this property.

SQL Workbench/J User's Manual

215

Default value: empty, the Java runtime default is used

Limitting size of the text put into the history

Property: workbench.sql.history.maxtextlength

When you execute a SQL statement in the editor, the current content of the editor is put into the history buffer. If you
are editing large scripts, this can lead to memory problems. This property controls the max. size of the editor text that is
put into the history.

If the current editor text is bigger than the size defined in this property the text is not put into the history.

Default value: 10485760 (10MB)

37.4. Controlling code generation for code snippets

Controlling newlines in code snippets

Property: workbench.clipcreate.includenewline

Possible values: true, false

When creating a Copy code snippet, the newlines inside the editor are preserved by putting a \n character into the
String declaration. Setting this property to false, will tell SQL Workbench/J to not put any \n characters into the Java
string.

Default: true

Controlling the concatenation character for code snippets

Property: workbench.clipcreate.concat

When creating a Copy code snippet, each line is concatenated using the standard + operator. If your programming
language uses a different concatenation character (e.g. &), this can be changed with this property.

Default: +

Controlling the prefix for code snippets

Property: workbench.clipcreate.codeprefix

When creating a Copy code snippet, this is prefixed with String sql = . With this property you can adjust this
prefix.

Default: String sql =

Controlling termination character code snippets

Property: workbench.clipcreate.codeend

When creating a Copy code snippet, this character will be appended to the end of the generated code.

SQL Workbench/J User's Manual

216

Default: ;

37.5. DbExplorer Settings

Switching the current database in the DbExplorer

Property: workbench.dbexplorer.switchcatalog

When connected to a DBMS that supports multiple databases (catalogs) for the same connection, the DbExplorer
displays a dropdown list with the available databases. Switching the selected catalog in the dropdown will trigger a
switch of the current catalog/database if the DbExplorer uses its own connection. If you do not want to switch the
database, but merely apply the new selection as a filter (which is always done, if the DbExplorer shares the connection
with the other SQL panels) set this property to false.

Default: true

Controlling data display in the DbExplorer

Property: workbench.db.objecttype.selectable.[dbid]=value1,value2,...

The DbExplorer makes the "data" tab available based on the type of the selected object in the object list (second
column). If the type returned by the JDBC driver is one of the types listed in this property, SQL Workbench/J assumes
that it can issue a SELECT * FROM to retrieve data from that object.

Default values:

.default=view,table,system view,system table

.postgresql=view,table,system view,system table,sequence

.rdb=view,table,system,system view
The values in this property are not case-sensitive (TABLE is the same as table)

Customizing the SELECT to be used for the data tab

You can customize the generated SELECT that is used to display the table data depending on the column type. Please
refer to the DbExplorer chapter for details.

Customizing columns that can be searched

Property: workbench.db.[dbid].datatypes.searchable

DbExplorer's "Search table data" feature only includes columns with the datatypes CHAR and VARCHAR into the
WHERE clause for searching.

Some database systems allow CLOB columns to be searched using a LIKE expression as well. This property can be
used to list all datatypes that can be used in a LIKE condition.

Default values:

For PostgreSQL: text
For MySQL: longtext,tinytext,mediumtext

Changing the isolation level for the table list retrieval

SQL Workbench/J User's Manual

217

Property: workbench.db.[dbid].dbexplorer.use.read_uncommitted

To avoid blocking of the table list retrieval, the isolation level used in the DbExplorer can be switched to
READ_UNCOMMITTED for DBMS that support this. This is e.g. necessary for Microsoft SQL Server as an
uncommitted DDL statement from a different connection can block the SELECT statement that retrieves the table
information.

The isolation level will only be changed if Separate connection per tab is enabled.

For Microsoft SQL Server the timeout waiting for such a lock can be configured as an alternative.

Default values:

For Microsoft SQL Server: true

37.6. General configuration settings

Defining a base directory for JDBC libraries

Property: workbench.libdir

A directory that contains the .jar files for the JDBC drivers. The value of this property can be referenced using
%LibDir% in the driver's definition. The value for this can also be specified on the command line.

No default

37.7. Database related settings

Include dependency information for "Object info"

workbench.db.objectinfo.includedepsProperty:

workbench.db.[dbid].objectinfo.includedeps

If Object info is invoked, this setting controls if dependent objects (indexes, triggers) are also displayed for tables. This
setting serves as a default for all DBMS. Displaying dependent objects can also be controlled on per DBMS by adding
the DBID to the property key. The value without the DBID serves as a default setting for all DBMS.

Default: false

Include foreign key constraint information for "Object info"

workbench.db.objectinfo.includefkProperty:

workbench.db.[dbid].objectinfo.includefk

If Object info is invoked, this setting controls if foreign key constraints are also displayed when dependent objects are
displayed for tables. This setting serves as a default for all DBMS. When adding the DBID to the property key this is
controlled on a per DBMS level.

Default: false

SQL Workbench/J User's Manual

218

Automatically connect the DataPumper

Property: workbench.datapumper.autoconnect

When opening the DataPumper as a separate window it will connect to the current profile as the source connection. If
you do not want the DataPumper to connect automatically set this property to false

Default: true

Controlling COMMIT for DDL statements

Property workbench.db.[dbid].ddlneedscommit

Possible values: true, false

Defines if the DBMS supports transactional DDL (CREATE TABLE, DROP TABLE, ...)

Default: false

COMMIT/ROLLBACK behaviour

Property: workbench.db.[dbid].usejdbccommit

Possible values: true, false

Some DBMS return an error when COMMIT or ROLLBACK is sent as a regular command through the JDBC interface. If
the DBMS is listed here, the JDBC functions commit() or rollback() will be used instead.

Default: false

Generating constraints for SQL source

Property: workbench.db.[dbid].inlineconstraints

Possible values: true, false

This setting controls the generation of the CREATE TABLE source in the DbExplorer. If a DBMS only supports
defining primary and foreign keys inside the CREATE TABLE statement, then this property should be set to true.

Case sensitivity when comparing values

Property workbench.db.[dbid].casesensitive

Possible values: true, false

The search panel of the DbExplorer highlights matching values in the result tables. When using the "Server Side
Search", the highlighter needs to know whether string comparisons in the database are case sensitive in order to
highlight the correct values.

Default: false

Definining SQL commands that may change the database

Property: workbench.db.updatingcommands for general SQL statements

SQL Workbench/J User's Manual

219

Property: workbench.db.[dbid].updatingcommands for DBMS specific update statements

When enabling the read only or confirm update option in a connection profile, SQL Workbench/J assumes a default
set of SQL commands that will change the database. With this property you can add additional keywords that should
be considered as "updating commands". This is a comma separated list of keywords. The keywords may not contain
whitespace.

No default

Databases supporting the check for uncommitted changes

Property: workbench.db.drivers.opentransaction.check

A list of JDBC driver class names that map to databases that support checking for uncommitted changes. If one of these
drivers is selected in a connection profile, the option Check for uncomitted changes will be visible in the connection
dialog.

To make this option work, a query that counts the number of uncommitted changes needs to be configured as well.

Default:
oracle.jdbc.driver.OracleDriver,oracle.jdbc.OracleDriver,org.postgresql.Driver,org.hsqldb.jdbc.JDBCDriver

Query to check for uncommitted changes

Property: workbench.db.[dbid].opentransaction.query

A query that can be used to check if the current connection has any uncommitted transactions. The query is expected
to return a single row with a single numeric column. If the value is zero, no uncommitted changes are detected. Any
number greater than zero means that there is an uncommitted change.

Default: For Oracle, PostgreSQL and HSQLDB, the corresponding queries are configured

URL for online manual

Property: workbench.db.[dbid].manual

This defines the URL of the online manual for that DBMS. This URL is shown in the browser when using the menu
item: Help » DBMS Manual will display the

You can append a version number after the DBID in the property key, to define different URLs for different DBMS
versions. The key workbench.db.microsoft_sql_server.8.manual defines the URL for SQL Server
2000, whereas workbench.db.microsoft_sql_server.10.5.manual defines the URL for SQL Server
2008 R2. The numbers have to be majorversion.minorversion as shown in the "Connection Info" dialog

If the online manuals always have the version information at the same place of the URL, placeholders
can be used, and only a single URL is necessary. For PostgreSQL, the following URL is used:
workbench.db.postgresql.manual=http://www.postgresql.org/docs/{0}.{1}/static/
index.html

Where {0} is replaced with the major version number and the {0} is replaced with the minor version number.

Filtering synonyms

Property: workbench.db.[dbid].exclude.synonyms

SQL Workbench/J User's Manual

220

The database explorer and the auto completion can display (Oracle public) synonyms. Some of these are usually not
of interest to the end user. Therefor the list of displayed synonyms can be controlled. This property defines a regular
expression. Each synonym that matches this regular expression, will be excluded from the list presented in the GUI.

Default value (for Oracle): ^AQ\\$.*|^MGMT\\$.*|^GV\\$.*|^EXF\\$.*|^KU\\$_.*|^WM\\$.*|
^MRV_.*|^CWM_.*|^CWM2_.*|^WK\\$_.*|^CTX_.*

Note that you need to use two backslashes in the RegeEx.

Defining keywords for date or timestamp input

Property: workbench.db.keyword.current_date

The "literals" that are accepted for DATE columns to identify the current date. Default values are current_date,
today

Property: workbench.db.keyword.current_timestamp

The "literals" that are accepted for TIMESTAMP columns to identify the current date/time. Default values are
current_timestamp,sysdate,systimestamp

Property: workbench.db.keyword.current_time

The "literals" that are accepted for TIME columns to identify the current time. Default values are current_time,
now

Use Savepoints to guard DML statement execution

Property: workbench.db.[dbid].sql.usesavepoint

Possible values: true, false

Some DBMS (such as PostgreSQL) cannot continue inside a transaction when an error occurs. A script with multiple
DML statements can therefor not run completely if one statement fails, even if you choose to ignore the error. If this
property is set to true, SQL Workbench/J will set a savepoint before executing a DML statement (SELECT, INSERT.
In case of an error the savepoint will be rolled back and the transaction can continue.

Default value: false

Use Savepoints to guard DDL statement execution

Property: workbench.db.[dbid].ddl.usesavepoint

Possible values: true, false

Some DBMS (such as PostgreSQL) cannot continue inside a transaction when an error occurs. A script with multiple
DDL statements can therefor not run completely if one statement fails, even if you choose to ignore the error. If this
property is set to true, SQL Workbench/J will set a savepoint before executing a DDL statement. In case of an error the
savepoint will be rolled back and the transaction can continue.

Default value: false

Use Savepoints for update/insert mode for WbImport

Property: workbench.db.[dbid].import.usesavepoint

SQL Workbench/J User's Manual

221

Possible values: true, false

Some DBMS (such as PostgreSQL) cannot continue inside a transaction when an error occurs. When running
WbImport in update,insert or insert,update mode, the first of the two statements needs to be rolled back
in order to be able to continue the import. If this property is set to true, SQL Workbench/J will set a savepoint before
executing the first (insert or update) statement. In case of an error the savepoint will be rolledback and WbImport will
try to execute the second statement.

Note that enabling savepoints can drastically reduce the performance of the import.

Default value: false

Ignore errors during data retrieval

Property: workbench.db.ignore.readerror

Possible values: true, false

When retrieving data (e.g. using a SELECT statement) errors that are reported by the driver will be displayed to the
user. The retrieval will be terminated. If you want to ignore errors and replace the data that could not be retrieved with a
NULL value, set this property to true.

Using this parameter is not recommended as it might produce results that do not reflect the data as it is stored in the
database.

Default value: false

Check read only columns

Property: workbench.db.[dbid].resultset.columns.check.readonly

Possible values: true, false

If this property is enabled, columns in result sets will be checked whether they are marked as read only by the
JDBC driver. Read-only columns will not be included in generated DML statements when editing data. If the driver
incorrectly reports columns that can be changed as read-only, setting this property to false will enable editing those
columns.

Default value: true

Customizing data type mapping

Property: workbench.db.[dbid].typemap

When using the -createTarget parameter for WbCopy, the type mapping from the JDBC driver might not be
sufficient or correct. With this setting you can define your own type mapping for a specific dbms. The entry is a list of
mappings that map the numeric value of a JDBC datatype (as defined in java.sql.Types) to a real data type name for the
target DBMS. The numeric JDBC datatype value and the DBMS specific datatype name are separated with a colon.
Each pair is separated by a semicolon.

The following entry maps the JDBC datatype with the value 3 (DECIMAL) to the target datatype double and the
value 2 (BIGINT) to the target type NUMBER. The NUMBER datatypes needs uses two parameter placeholders
$size and $digits. The last mapping maps the JDBC value -1 (LONGVARCHAR) to the DBMS type VARCHAR
using only the $size parameter

workbench.db.some_dbid.typemap=3:DOUBLE;2:NUMBER($size,$digits);-1:VARCHAR($size)

http://docs.oracle.com/javase/8/docs/api/java/sql/Types.html

SQL Workbench/J User's Manual

222

JDBC 4.0 defines the following constants:

• BIGINT = -5
• BINARY = -2
• BIT = -7
• BLOB = 2004
• BOOLEAN = 16
• CHAR = 1
• NCHAR = -15
• CLOB = 2005
• NCLOB = 2011
• DATE = 91
• DECIMAL = 3
• DOUBLE = 8
• FLOAT = 6
• INTEGER = 4
• LONGVARBINARY = -4
• LONGVARCHAR = -1
• LONGNVARCHAR = -16
• NUMERIC = 2
• REAL = 7
• SMALLINT = 5
• TIME = 92
• TIMESTAMP = 93
• TINYINT = -6
• VARBINARY = -3
• VARCHAR = 12
• NVARCHAR = -9
• ROWID = -8
• SQLXML = 2009

37.8. Configuring the check for the update table

Configuring the check process

Property: workbench.db.updatetable.check.pkonly (for all DBMS)

Property: workbench.db.[dbid].updatetable.check.pkonly (will overwrite the DBMS independent
configuration)

Possible values: true, false

When changing values directly in the result set, SQL Workbench/J needs to find out which table is being edited. As this
process requires multiple requests to the database server in order to support different features during editing this can be
time consuming depending on the DBMS being used and the size of the database.

If this property is set to true, only the PK definition will be retrieved, otherwise the full definition of all columns of
the table.

When this is enabled, editing results based on statements with multiple tables might not work properly. The option
Highlight required fields will also have no effect as no column information will be retrieved for the table. It is also
recommended to enable the option Highlight required fields to make sure the correct SQL statements are generated
when only the PK information is checked.

SQL Workbench/J User's Manual

223

Using unique indexes when no primary key is available

Property: workbench.db.pk.retrieval.checkunique (for all DBMS)

Property: workbench.db.[dbid].pk.retrieval.checkunique (will overwrite the DBMS independent
configuration)

Possible values: true, false

This property controls the behaviour when no primary key is found when checking the update table. If this is set to true,
SQL Workbench/J will use a unique index instead if available. Note that the check for the PK is still done during hte
detection of the update table. Using a unique key is only a fallback.

Using the completion cache when checking the update table

Property: workbench.db.updatetable.check.use.cache (for all DBMS)

Property: workbench.db.[dbid].updatetable.check.use.cache (will overwrite the DBMS independent
configuration)

Possible values: true, false

If this is set to true, retrieval of the table's columns, primary key (or unique index) information will be done using the
completion cache. This can speed up repeated lookups for the same table(s).

The disadvantage is that when the table definitions are changed this would not be reflected in the cache and thus the
PK information used or the generated SQL statements to save the changes might be wrong. It is recommend to enable
Confirm result set updates to make sure the generated SQL statements are correct.

37.9. DBMS specific settings

37.9.1. Oracle specific settings

Support for Oracle materialized views

Property: workbench.db.oracle.detectsnapshots

When displaying the list of tables in the database explorer Oracle materialized views (snapshots) are identified as tables
by the Oracle JDBC driver. To identify a specific "table" as a materialized view, a second request to the database is
necessary (accessing the system view ALL_MVIEWS). As this request can slow down the retrieval performance, this
feature can be turned off. If for any reason the ALL_MVIEWS view cannot be accessed, this feature will be turned off
until you re-connect to the database.

Default value: true

Fix type display for VARCHAR columns in Oracle

Property: workbench.db.oracle.fixcharsemantics

The Oracle driver does not report the size of VARCHAR2 columns correctly if the character semantic has been set
to "char". The JDBC driver always returns the length in bytes. When this property is set to true, the length for those
columns will be displayed correctly in the DbExplorer. As this means SQL Workbench/J is using it's own query to
retrieve the table definition, this might not always yield the same results as the original statement from the Oracle
driver. If your table definitions are not displayed correcly, set this value to false so that the original driver methods
are used. The statement used by SQL Workbench/J is a bit faster then then original Oracle statement, as it does not use
a LIKE predicate (which is required to comply with the JDBC specs).

SQL Workbench/J User's Manual

224

Default value: true

Fix type display for NVARCHAR2 columns in Oracle

Property: workbench.db.oracle.fixnvarchartype

The Oracle driver does not report the type of NVARCHAR2 columns correctly. They are returned as Types.OTHER.
If this property is enabled, than SQL Workbench/J is also using it's own SELECT statement to retrieve the table
definition.

Default value: true

Include tablespace information in the generated SQL source

Property: workbench.db.oracle.retrieve_tablespace

Possible values: true, false

If this is enabled, the generated SQL source for tables and indexes will contain the corresponding TABLESPACE xxx
option to reflect the way the table was created. If this option should not be included in the SQL, set this parameter to
false.

Default value: true

Check for the user's default tablespace

Property: workbench.db.oracle.check_default_tablespace

Possible values: true, false

When including the tablespace for an index or table, and this option is enabled, the tablespace for tables and indexes
owned by the current user is only displayed if it is different from the default tablespace. For tables and indexes owned
by other users, the tablespace will still be displayed even if it's the default tablespace of the owner.

Default value: false

37.9.2. Microsoft SQL Server specific settings

Define a lock timeout for the DbExplorer

Property: workbench.db.microsoft_sql_server.dbexplorer.locktimeout

Possible values: positive integer value. (Timeout in milliseconds)

This defines timeout that limits the time the driver should wait when hitting a read lock during retrieval of the table
information. The timeout will be changed by running SET LOCK_TIMEOUT ... after the DbExplorer is opened.

The timeout will only be changed if Separate connection per tab is enabled.

As an alternative, the DbExplorer can be configured to change the isolation level to READ UNCOMMITTED to avoid
the locks alltogether (but display potentially wrong information).

Default value: 2500

Microsoft SQL Server extended property for remarks

Property: workbench.db.microsoft_sql_server.remarks.propertyname

Defines the name of the extended property that is queried in order to retrieve table or column remarks for SQL Server.

SQL Workbench/J User's Manual

225

SQL Workbench/J will use the table function fn_listextendedproperty to retrieve the extended property defined by this
configuration setting to retrieve remarks.

Default value: MS_DESCRIPTION

Retrieving remarks for Microsoft SQL Server

Property:

workbench.db.microsoft_sql_server.remarks.object.retrieve
workbench.db.microsoft_sql_server.remarks.column.retrieve

Enables/disables the retrieval of extended properties as a replacement for the standard SQL COMMENT ON ...
capability.

SQL Workbench/J will use SQL Server's fn_listextendedproperty table function to retrieve table or column remarks.
As this can have a performance impact on the retrieval of tables or columns, this retrieval can be disabled using this
configuration setting.

The name of the extended property can be configured using
workbench.db.microsoft_sql_server.remarks.propertyname

Enabling these options is also necessary in order to get comments in a WbSchemaReport output

Default value: true for both properties

37.10. SQL Execution related settings

Maximum script size for in-memory script execution

Property: workbench.sql.script.inmemory.maxsize

This setting controls the size up to which files that are executed in batch mode or via the WbInclude command are read
into memory. Files exceeding this size are not read into memory but processed statement by statement. When a file is
not read into memory the automatic detection of the alternate delimiter does not work any longer. The size is given in
bytes.

Default: 1048576

Ignoring certain SQL commands

Property: workbench.db.ignore.[dbid]

For a DBMS identifier you can define a list of commands that are simply ignored by SQL Workbench/J. This is useful
e.g. for Oracle, when you want to run scripts that are intended for SQL*Plus. If those scripts contain special SQL*Plus
commands (that are not understood by the Oracle server as SQL*Plus executes these commands directly) they would
fail in SQL Workbench/J. If those commands are simply ignored and not send to the server, the scripts can run without
modification.

Default:
workbench.db.ignore.oracle=quit,exit,whenever,spool,rem,clear,break,btitle,column,change,repheader,repfooter,run,save,store,timing,ttitle

Enabling short WbInclude

Property: workbench.db.supportshortinclude

http://msdn.microsoft.com/en-us/library/ms179853%28SQL.90%29.aspx
http://msdn.microsoft.com/en-us/library/ms179853%28SQL.90%29.aspx

SQL Workbench/J User's Manual

226

By default the WbInclude command can be shortened using the @ sign. This behaviour is disabled for MS SQL to
avoid conflicts with parameter definitions in stored procedures. This property contains a list of DBIDs for which this
should be enabled. To enable this for all DBMS, simply use * as the value for this property.

Default: oracle, rdb, hsqldb, postgresql, mysql, adaptive_server_anywhere,
cloudscape, apache_derby

Check for single line commands without delimiter

Property: workbench.db.checksinglelinecmd

When parsing a SQL script, SQL Workbench/J supports statements that are put into a single line without a delimiter.
This is primarily intended for compatibility with Oracle's SQL*Plus and is not enabled for other database systems.

Default: oracle

37.11. Default settings for Export/Import

For some switches of the WbExport and WbImport command, you can override the default values used by SQL
Workbench/J in case you do not provide the parameter. The default values mentioned in this chapter apply, if no
property is defined in the workbench.settings file. The current default for these properties is displayed in the
help message when you run the corresponding command without any parameters.

Controlling header lines in text exports

Property: workbench.export.text.default.header

Possible values: true, false

This property controls whether default value for the -header parameter of the WbExport command.

Default: false

Controlling XML export format

Property: workbench.export.xml.default.verbose

Possible values: true, false

This property controls whether XML exports are done using verbose XML or short tags and only basic formatting. This
property sets the default value of the -verboseXML parameter for the WbExport command.

Default: true

Setting default for WbImport's -continueOnError parameter

Property: workbench.import.default.continue

Possible values: true, false

This property controls the default value for the parameter -continueOnError of the WbImport command.

Default: false

SQL Workbench/J User's Manual

227

Setting a default for WbImport's -header parameter

Property: workbench.import.default.header

Possible values: true, false

This property controls the default value for the parameter -header of the WbImport command.

Default: true

Setting a default for WbImport's -multiLine parameter

Property: workbench.import.default.multilinerecord

Possible values: true, false

This property controls the default value for the parameter -multiLine of the WbImport command.

Default: false

Setting a default for WbImport's -trimValues parameter

Property: workbench.import.default.trimvalues

Possible values: true, false

This property controls the default value for the parameter -trimValues of the WbImport command.

Default: false

37.12. Controlling the log file

When SQL Workbench/J initializes the logging environment, it also adds two system property that can be used to define
the logfile relative to the configuration or the installation directory:

• workbench.config.dir contains the full path to the configuration directory
• workbench.install.dir contains the full path to the directory where sqlworkbench.jar is located

These properties can be used to put the logfile into the directory relative to the config or installation directory without
the need to hardcode the directory name.

37.12.1. Configure internal logging

Log file location

Property: workbench.log.file

Defines the location of the logfile. By default, the file will be named workbench.log and will be written into the
configuration directory.

Log level

Property: workbench.log.level

Set the log level for the log file. Valid values are

SQL Workbench/J User's Manual

228

• DEBUG
• INFO
• WARN
• ERROR

Default: INFO

Log format

Property: workbench.log.format

Define the elements that are included in log messages. The following placeholders are supported:

• {type}
• {timestamp}
• {message}
• {error}
• {source}
• {stacktrace}

This property does not define the layout of the message, only the elements that are logged.

If the log level is set to DEBUG, the stacktrace will always be displayed even if it is not included in the format string.

If you want more control over the log file and the format of the message, please switch the logging to use Log4J.

Default: {type} {timestamp} {message} {error}

Logging to the console

Property: workbench.log.console

Defines whether SQL Workbench/J logs messages additionally to the standard error output

Default: false

Maximum logfile size

Property: workbench.log.maxfilesize

Defines the maximum size of the logfile in bytes. If the size is exceeded a new logfile is created during the next startup.

Default: 10485760 (1MB)

Maximum number of logfiles to keep

Property: workbench.log.backup.count

Defines the maximum number of logfiles to be kept after a new logfile is created. The old logfiles will be renamed with
a number (workbench.log.1 being the oldest logfile)

Default: 5

Logging SQL used for retrieving metadata

Property: workbench.dbmetadata.logsql

If this is set to true the SQL queries used to retrieve DBMS specific meta data (such as view/procedure/trigger source,
defined triggers/views) will be logged with level INFO.

SQL Workbench/J User's Manual

229

This can be used to debug customized SQL statements for DBMS's which are not (yet) pre-configured.

Default: false

37.13. Configure Log4J logging

37.13.1. Turn on Log4J logging

Property: workbench.log.log4j

If you need more control over the logfile (e.g. for batch processing) you can delegate logging to Log4j. You can turn on
Log4j logging in two different ways:

• The value of the property is true
• The value of the property points to an existing file

If you just pass true as the value for this property, the Log4j configuration file must be accessible to Log4j through
the usual ways (please refer to the Log4j manual for details). If you specify a configuration file, this will be "passed" to
Log4j by setting the system property log4j.configuration to contain the correct "file URL" needed by Log4j.

When passing a configuration file through this property, you can use a system property as part of the filename (e.g.
${user.home}/sqlworkbench.log). If the filename denotes a relative filename (e.g. log4j.xml without any
path information), then it is assumed to be relative to the configuration directory.

When you turn on Log4J logging, you must copy copy the Logg4J library as log4j.jar into the directory where
sqlworbkench.jar is located. Do not include the version number in the filename.

The jar file must be named log4j.jar

If the Log4J classes are not found, the built-in logging will be used (see above)

When Log4J logging is enabled, none of the logging properties described in the previous section will be used. You have
to configure everything through log4j.xml.

When using Help » Show log file with Log4J enabled, and you have configured Log4J to write to multiple files, only
the first file will be shown.

When SQL Workbench/J initializes the logging environment, it also adds two system property that can be used to define
the logfile relative to the configuration or the installation directory:

• workbench.config.dir contains the full path to the configuration directory
• workbench.install.dir contains the full path to the directory where sqlworkbench.jar is located

These properties can be used to put the logfile into the directory relative to the config or installation directory without
the need to hardcode the directory name in log4j.xml

A sample log4j.xml can be found in the scripts directory of the SQL Workbench/J distribution.

The system properties that are set by SQL Workbench/J to point to the configuration and installation directory (see
above) can also be used in the log4j.xml file.

37.14. Configuring the logfile viewer

Property: workbench.logfile.viewer.program

SQL Workbench/J User's Manual

230

This property controls which application is used to display the logfile when using Help » Show log file.

The possible values for this property are:

• internal - this is the default and uses the built-in logviewer
• system - this will use the tool registered in the operating system to open files with the extension .log
• a path to an existing application - if the value denotes an existing filename, it is assumed that this is an application

and accepts a filename as a command line parameter

37.15. Settings related to SQL statement generation

Controlling schema usage in generated SQL statements

Property: workbench.sql.ignoreschema.[dbid]=schema1,...

Define a list of schemas that should be ignored for the DB ID When SQL Workbench/J creates DML statements and the
current table is reported to belong to any of the schemas listed in this property, the schema will not be used to qualify
the table. To ignore all schemas use a *, e.g. workbench.sql.ignoreschema.rdb=*. In this case, table names
will never be prefixed with the schema name reported by the JDBC driver. The values specified in this property are case
sensitive.

Note that for Oracle, tables that are owned by the current user will never be prefixed with the owner.

Default values:

.oracle=PUBLIC

.postgresql=public

.rdb=*

Defining CREATE TABLE templates for WbCopy

Property: workbench.db.[dbid].create.table.[typename]

This defines a complete CREATE TABLE statement that is used by WbCopy to create the target table. The typename
value is the value that has to be used for the -tableType parameter of the WbCopy command.

The following placeholders are supported in the template

%fq_table_name% replaced with the fully qualified table name
%table_name% replaced with the specified table name (without schema or catalog)
%columnlist% replaced with the column definitions (for all columns)
%pk_definition% replaced with the primary key definition.

The placeholder %pk_definition% can be used if the DBMS does not support defining a primary key using an
ALTER TABLE on the created table. If this placeholder is present in the template and the table has a primary key, the
placeholder will replaced with an appropriate PRIMARY KEY (col1, ...) expression. Note that the template
must not contain the needed comma for the PRIMARY KEY. The comma will be added by SQL Workbench/J if a
primary key is defined. If the table has no primary key, the placeholder will automatically be removed.

Default values:

.postgresql.create.table.temp=CREATE LOCAL TEMPORARY TABLE %fq_table_name%
(%columnlist%) ON COMMIT DROP
.oracle.create.table.globaltemp=CREATE GLOBAL TEMPORARY TABLE %fq_table_name%
(%columnlist%) ON COMMIT DELETE ROWS

SQL Workbench/J User's Manual

231

.h2.create.table.temp=CREATE LOCAL TEMPORARY TABLE %fq_table_name% (%columnlist
%)
.informix_dynamic_server.create.table.temp_nolog=CREATE TEMP TABLE
%fq_table_name% (%columnlist% %pk_definition%) WITH NO LOG

System generated names for contraints

Property: workbench.db.[dbid].constraints.systemname

Defines a regular expression to identify system generated constraint names. If a constraint name is identified as being
system generated, it is treated as if no name was defined, when e.g. creating the SQL for a table. Whether or not SQL
Workbench/J then generates a name for the constraint can be controlled in the options for the DbExplorer.

Default values:

oracle: ^SYS_.*
mysql: PRIMARY

Controlling the chunk size for WbDataDiff

Property: workbench.sql.sync.chunksize

Controls the number of rows that are retrieved from the target table when running WbDataDiff or WbCopy with the
-syncDelete=true parameter.

Default value: 25

37.16. Customize table source retrieval

SQL Workbench/J re-generates the source of a table based on the information about the table's metadata returned by
the driver. In some cases the driver might not return the correct information, or not all the information that is necessary
to build the correct syntax for the DBMS. In those cases, a SQL query can be configured that can use the built-in
functionality of the DBMS to return a DDL statement to re-create the table.

This DBMS specific retrieval of the table source is defined by two properties in workbench.settings.

Defining the SQL statement

Property: workbench.db.[dbid].retrieve.create.table.query

This property defines the SQL query that retrieves the DDL for the table. It must be a statement that returns a result set.
The statement may contain the following placeholders:

%catalog% the catalog in which the table is defined
%schema% the schema in which the table is defined
%table_name% the name of table
%fq_index_name% the fully qualified name of the table (including catalog and schema)

If the SQL returned by the DBMS includes the indexes defined for the table, the property:
workbench.db.[dbid].retrieve.create.table.index_included has to be set to true. Otherwise
SQL Workbench/J will generate the DDL statement to re-create the indexes.

If the SQL returned by the DBMS includes table and column comments, the property:
workbench.db.[dbid].retrieve.create.table.comments_included has to be set to true.
Otherwise SQL Workbench/J will generate table and column comments.

SQL Workbench/J User's Manual

232

Defining the result column

Property: workbench.db.[dbid].retrieve.create.table.sourcecol

By default the source code is assumed to be in the first column of the result. If that is not the case this property can be
used to define the column index of the result in which the table's source is available. The first column has the index 1.

The following example configures a SQL statement to retrieve the table source using MySQL's SHOW CREATE
TABLE:

workbench.db.mysql.retrieve.create.table.query=show create table %fq_table_name%
workbench.db.mysql.retrieve.create.table.sourcecol=2
workbench.db.mysql.retrieve.create.table.index_included=true

Using use Oracle's DBMS_METADATA to retrieve the table source, is controlled through an Oracle specific
configuration property.

37.17. Customize index source retrieval

SQL Workbench/J re-generates the source of an index based on the information about the table's metadata returned by
the driver. In some cases the driver might not return the correct information, or not all the information that is necessary
to build the correct syntax for the DBMS. In those cases, a SQL query can be configured that can use the built-in
functionality of the DBMS to return the DDL to recreate the index.

This DBMS specific retrieval of the index source is defined by two properties in workbench.settings.

Defining the SQL statement

Property: workbench.db.[dbid].retrieve.create.index.query

This property defines the SQL query that should be executed to retrieve the DDL to re-create the index. It must be a
statement that returns a result set. The statement may contain the following placeholders:

%catalog% the catalog in which the index is defined
%schema% the schema in which the index is defined
%indexname% the name of the index
%fq_index_name% the fully qualified name of the index (including catalog and schema)
%table_name% the name of table on which the index is defined, including the catalog or schema if necessary
%simple_table_name% the name of table on which the index is defined without the catalog or schema.

Defining the result column

Property: workbench.db.[dbid].retrieve.create.index.sourcecol

By default the source code is assumed to be in the first column of the result. If that is not the case this property can be
used to define the column index of the result in which the table's source is available. The first column has the index 1.

If an error occurs during retrieval, SQL Workbench/J will revert to the built-in table source generation.

The following example configures the use of the function pg_get_indexdef() to be used

workbench.db.postgresql.retrieve.create.index.query=select pg_get_indexdef('%fq_index_name%'::regclass)

Using Oracle's DBMS_METADATA to retrieve the index source, is controlled through an Oracle specific configuration
property.

SQL Workbench/J User's Manual

233

37.18. Filter settings

Controlling the number of items in the pick list

Property: workbench.gui.filter.mru.maxsize

When saving a filter to an external file, the pick list next to the filter icon will offer a drop down that contains the most
recently used filter definitions. This setting will control the maximum size of that drop down.

Default value: 15

SQL Workbench/J User's Manual

234

38. Simple properties based profile storage

The default file format for saving connection profiles is XML, however when using SQL Workbench/J in batch mode
or as a console application editing the XML format is tedious. Therefor it is possible to store the profiles in a "plain"
properties file.

The properties file must have the extension .properties, otherwise it will not treated as a properties
file by SQL Workbench/J

The properties file can contain multiple profiles, each property key has to start with the prefix profile. The second
element of the key is a unique identifier for the profile that is used to combine the keys for one profile together. This
identifier can be any combination of digits and characters. The identifier is case sensitive.

The last element of the key is the actual profile property.

A minimal definition of a profile in a properties file, could look like this:

profile.042.name=Local Postgres
profile.042.driverclass=org.postgresql.Driver
profile.042.url=jdbc:postgresql://localhost/postgres
profile.042.username=arthur
profile.042.password=dent
profile.042.driverjar=postgresql-9.4-1203.jdbc41.jar

In the above example the identifier 042 is used. The actual value is irrelevant. It is only important that all properties for
one profile have the same identifier. You can also use any other combination of digits and characters.

For each profile the following properties can be defined. The property name listed in the following table is the last
element for each key in the properties file.

Key Value

name This defines the name of the connection profile which
can e.g. be used with the -profile command line
parameter.

This parameter is mandatory.

url This defines the JDBC URL for the connection

This parameter is mandatory.

username This defines the username that should be used to connect
to the database

This parameter is mandatory.

password This defines the password that should be used to connect
to the database

This parameter is mandatory.

drivername This defines the named JDBC driver as registered
within SQL Workbench/J. If this is specified the
corresponding driver needs to be defined and available in
the WbDrivers.xml file.

Either this parameter or driverjar is mandatory.

driverjar This specifies the jar file that contains the JDBC driver. If
driverjar is specified drivername is ignored.

SQL Workbench/J User's Manual

235

Key Value

If the filename is not specified as an absolute file, it is
assumed to be relative to the location of the properties file.

Either this parameter or drivername is mandatory.

Defining the driver jar in this way is not supported when
running in GUI mode. Drivers managed through the GUI
will always be saved in WbDrivers.xml

autocommit Defines the autocommit behaviour of the connection. This
defaults to false

fetchsize Defines the fetchsize attribute of the connection.

SQL Workbench/J User's Manual

236

Index
B
Batch files

connecting, 76
defining variables, 79
setting SQL Workbench/J configuration properties, 79
specify SQL script, 76
starting SQL Workbench/J, 76

C
Clipboard

export result to, 56
import data from, 58

Command line
connection profile, 18
JDBC connection, 19
parameters, 17

Configuration
advanced configuration properties, 213
change advanced configuration properties, 165
JDBC driver, 22

Connection profile, 25
autocommit, 26
connection URL, 26
create, 25
default fetch size, 26
delete, 25
extended properties, 27
separate connection, 28
separate session, 28
timeout, 26

Customize
DbExplorer DDL generation, 231

D
DB2

Column comments not displayed, 188
Connection closed, 187
DATE values not displayed, 187
Problems, 187
Table comments not displayed, 188

DbExplorer
customize DDL generation, 231
prevent locking, 216
show all triggers, 203

DDL
Execute DDL statements, 43

DML
select values for foreign key columns, 66

E
Editing data

SQL Workbench/J User's Manual

237

deleting rows, 54
deleting rows which are referenced through a foreign key, 67
select values for foreign key columns, 66

Editor
expanding text clips, 64

Excel export
installation, 86, 182

Export
clipboard, 57
compress, 99
Excel, 97
HTML, 98
JSON, 99
memory problems, 86
OpenOffice, 97
parameters, 87
result set, 56
Spreadsheet, 97
SQL INSERT script, 95
SQL query result, 86
SQL UPDATE script, 95
table, 86
text files, 92
XML files, 94

F
Foreign keys

editing values of foreign key columns, 66
Update foreign key columns, 66

I
Import

clipboard, 58, 58
csv, 103
Excel, 103
flat files, 103
OpenOffice, 103
parameters, 103
result set, 58
tab separated, 103
XML, 103
XSLT, 103

J
Java runtime

Java not found on Windows, 14
JDBC Connection

connection properties, 27
JDBC driver

class name, 22
jar file, 22
library, 22
license file, 22
sample URL, 22

SQL Workbench/J User's Manual

238

L
Liquibase

Run SQL from Liquibase file, 156

M
Memory problems

Increasing the memory available for the application, 15
WbCopy or WbExport using a lot of memory with PostgreSQL, 188
WbCopy or WbExport using a lot of memory with SQL Server, 187

Microsoft SQL Server
Incorrect value for DATE columns, 185
JDBC URL properties, 187
Locking problems, 186
lock timeout for DbExplorer, 224
prevent locking in DbExplorer, 217
Problems, 185
Problem when running SHOWPLAN_ALL, 186
Sequence increments twice, 187
WbCopy memory problem, 187
WbExport memory problem, 186
Windows authentication, 186

MySQL
display table comments in DbExplorer, 185
problems, 184

O
Options dialog

dialog too small, 182
Oracle

autotrace, 70
check for pending transactions, 69
database comments, 183
DATE datatype, 202
DBMS_METADATA, 71
dbms_output, 71
No views displayed in DbExplorer, 183
Problems, 183
show system information, 70
tablespace information, 224, 224
Tables with underscores not treated correctly, 183

P
PostgreSQL

.pgpass, 68
check for pending transactions, 68
COPY, 68
libpq, 27
pgpass, 27
pgpass.conf, 68
Problems, 188
WbCopy memory problem, 188
WbExport memory problem, 188

Problems
Context menu not displayed, 182
create stored procedure, 181

SQL Workbench/J User's Manual

239

create trigger, 181
dialog too small, 182
driver not found, 181
Excel export not possible, 182
GUI freezes, 182
IBM DB2, 187
memory usage during export, 86
Microsoft SQL Server, 185
MySQL, 184
Oracle, 183
out of memory, 182
PostgreSQL, 188
Sybase SQL Anywhere, 189
timestamp with timezone, 181
timezone, 181
wrong DDL, 181
wrong index source, 181
wrong table source, 181

Profile dialog
dialog too small, 182

S
SQL

change the statement delimiter, 43
Starting

Java runtime not found on Windows, 14
Statement delimiter

change the statement delimiter, 43
Stored procedures

create stored procedure, 43

T
Triggers

create trigger, 43
show all triggers in DbExplorer, 203

V
Variables

define on command line, 18
define through SQL query, 73
definition, 73
editing, 74
load from file, 74
prompting, 75
use in batch files, 79
using, 74

W
Windows

Java not found, 14
using the launcher, 14

	SQL Workbench/J User's Manual
	Table of Contents
	1. General Information
	1.1. Program version
	1.2. Feedback and support
	1.3. Credits and thanks
	1.4. Third party components
	1.4.1. JLine
	1.4.2. WinRun4J License
	1.4.3. Editor
	1.4.4. Charset detector
	1.4.5. iHarder - Base64 implementation
	1.4.6. Icons

	2. Software license
	2.1. Definitions
	2.2. Grant of Copyright License
	2.3. Restrictions (deviation of the Apache License)
	2.4. Grant of Patent License
	2.5. Redistribution
	2.6. Submission of Contributions
	2.7. Trademarks
	2.8. Disclaimer of Warranty.
	2.9. Limitation of Liability
	2.10. Accepting Warranty or Additional Liability

	3. Change log
	4. Installing and starting SQL Workbench/J
	4.1. Pre-requisites
	4.2. First time installation
	4.3. Upgrade installation
	4.4. Starting the program from the commandline
	4.5. Starting the program using the shell script
	4.5.1. Specifying the Java runtime for the shell script

	4.6. Starting the program using the Windows® launcher
	4.6.1. Parameters for the Windows® launcher
	Specifying the Java location
	Defining the memory for the application

	4.7. Configuration directory
	4.8. Copying an installation
	4.9. Increasing the memory available to the application

	5. Command line parameters
	5.1. Specify the directory for configuration settings
	5.2. Specify a base directory for JDBC driver libraries
	5.3. Specify the file containing connection profiles
	5.4. Defining variables
	5.5. Prevent updating the .settings file
	5.6. Connect using a pre-defined connection profile
	5.7. Connect without a profile

	6. JDBC Drivers
	6.1. Configuring JDBC drivers
	6.2. Specifying a library directory
	6.3. Popular JDBC drivers

	7. Connecting to the database
	7.1. Connection profiles
	7.2. Managing profile groups
	7.3. JDBC related profile settings
	7.3.1. Driver
	7.3.2. URL
	7.3.3. Username
	7.3.4. Password
	7.3.5. Autocommit
	7.3.6. Fetch size
	7.3.7. Timeout

	7.4. PostgreSQL connections
	7.5. Extended properties for the JDBC driver
	7.6. SQL Workbench/J specific settings
	7.6.1. Prompt for username
	7.6.2. Save password
	7.6.3. Separate connection per tab
	7.6.4. Ignore DROP errors
	7.6.5. Trim CHAR data
	7.6.6. Hide warnings
	7.6.7. Remove comments
	7.6.8. Confirm updates
	7.6.9. Read only
	7.6.10. Rollback before disconnect
	7.6.11. Empty string is NULL
	7.6.12. Include NULL columns in INSERT
	7.6.13. Check for uncommitted changes
	7.6.14. Remember DbExplorer Schema
	7.6.15. Store completion cache locally
	7.6.16. Info Background
	7.6.17. Alternate delimiter
	7.6.18. Workspace
	7.6.19. Tagging connection profiles
	7.6.20. Main window icon
	7.6.21. Connect scripts
	7.6.22. Schema and Catalog filters
	7.6.23. Variables

	7.7. Connect to Oracle with SYSDBA privilege
	7.8. Using the quick filter

	8. Using workspaces
	8.1. Overview
	8.2. Creating a copy of the current workspace
	8.3. Load a different workspace
	8.4. Workspace and external files
	8.5. Workspace variables

	9. Editing SQL Statements
	9.1. Editing files
	9.2. Code completion
	9.3. Show hints for INSERT statements
	9.4. Customizing keyword highlighting
	9.5. Reformat SQL
	9.6. Create SQL value lists
	9.7. Programming related editor functions
	9.7.1. Copy Code Snippet
	9.7.2. Clean Java code
	9.7.3. Support for prepared statements

	10. Working with bookmarks
	10.1. Defining bookmarks
	10.2. Jumping to a bookmark
	10.3. Configuring the display of the bookmark list

	11. Creating stored procedures and triggers
	11.1. PostgreSQL
	11.2. Oracle PL/SQL
	11.3. Other DBMS

	12. Using SQL Workbench/J
	12.1. Displaying help
	12.2. Resizing windows
	12.3. Executing SQL statements
	12.3.1. Control the statement to be executed
	Statement history

	12.4. Displaying results
	12.4.1. Limiting result sizes
	12.4.2. Displaying values with embedded newlines
	12.4.3. Naming result tabs

	12.5. Dealing with BLOB and CLOB columns
	12.5.1. Updating BLOB data through SQL
	12.5.2. Updating CLOB data through SQL
	12.5.3. Saving BLOB data to a file using SQL
	12.5.4. BLOB data in the result set

	12.6. Performance tuning when executing SQL
	12.7. Using workspaces
	12.8. Saving and loading SQL scripts
	12.9. Displaying the structure of tables
	12.10. Viewing server messages
	12.10.1. PostgreSQL
	12.10.2. Oracle
	12.10.3. MS SQL Server
	12.10.4. Other database systems

	12.11. Editing data
	12.12. Deleting rows from the result
	12.13. Sorting the result
	12.14. Filtering the result
	12.14.1. Defining a filter manually
	12.14.2. Defining a filter from the selection

	12.15. Running stored procedures
	12.16. Export result data
	12.17. Copy data to the clipboard
	12.18. Import data into the result set
	12.18.1. Import a file into the current result set
	12.18.2. Import the clipboard into the current result

	13. Using SQL Workbench/J specific annotations in SQL comments
	13.1. Naming result tabs
	13.2. Adding macros to the result's context menu
	13.3. Re-using an existing named result tab
	13.4. Scrolling the result
	13.5. Appending a results
	13.6. Suppressing empty results
	13.7. Automatic refresh of the result

	14. Using macros and text clips
	14.1. Loading and saving macro sets
	14.2. Defining Macros
	14.3. Executable macros
	14.4. Expandable macros

	15. Working with foreign keys
	15.1. Navigating referenced rows
	15.2. Generating JOIN conditions
	15.3. Selecting foreign key values in referencing tables
	15.3.1. Editing foreign key values
	15.3.2. Selecting FK values when editing DML statements

	15.4. Deleting rows with foreign keys

	16. DBMS specific features
	16.1. PostgreSQL specific features
	16.1.1. Checking for un-committed changes
	16.1.2. Using the COPY API for client side files
	16.1.3. Using .pgpass
	16.1.4. Using savepoints for single statements
	16.1.5. Preventing connections with "idle in transaction" state

	16.2. Oracle specific features
	16.2.1. Checking for un-committed changes
	16.2.2. SQL*Plus autotrace mode
	Examples

	16.2.3. Using SQL*Plus' SHOW command
	16.2.4. Using Oracle's DBMS_OUTPUT package
	16.2.5. Using DBMS_METADATA for source retrieval

	17. Variable substitution in SQL statements
	17.1. Defining variables
	17.2. Populate a variable from a SELECT statement
	17.3. Populate a variable from a file
	17.4. Editing variables
	17.5. Using variables in SQL statements
	17.6. Prompting for values during execution
	17.7. Controlling the order of variables during prompting

	18. Using SQL Workbench/J in batch files
	18.1. Specifying the connection
	18.2. Specifying the script file(s)
	18.3. Specifying a SQL command directly
	18.4. Specifying a delimiter
	18.5. Specifying an encoding for the file(s)
	18.6. Specifying a logfile
	18.7. Handling errors
	18.8. Specify a script to be executed on successful completion
	18.9. Specify a script to be executed after an error
	18.10. Ignoring errors from DROP statements
	18.11. Changing the connection
	18.12. Controlling console output during batch execution
	18.12.1. Displaying result sets
	18.12.2. Controlling execution feedback
	18.12.3. Controlling statement progress information

	18.13. Running batch scripts interactively
	18.14. Defining variables
	18.15. Setting configuration properties
	18.16. Examples

	19. Using SQL Workbench/J in console mode
	19.1. Entering statements
	19.2. Exiting console mode
	19.3. Setting or changing the connection
	19.4. Displaying result sets
	19.5. Running SQL scripts that produce a result
	19.6. Controlling the number of rows displayed
	19.7. Controlling the query timeout
	19.8. Managing connection profiles
	19.8.1. List available profiles - WbListProfiles
	19.8.2. Delete a profile - WbDeleteProfile
	19.8.3. Save the current profile - WbStoreProfile
	19.8.4. Create a new connection profile - WbCreateProfile

	19.9. PostgreSQL psql commands

	20. Export data using WbExport
	20.1. Memory usage and WbExport
	20.2. Exporting Excel files
	20.3. General WbExport parameters
	20.4. Parameters for text export
	20.5. Parameters for XML export
	20.6. Parameters for type SQLUPDATE, SQLINSERT or SQLDELETEINSERT
	20.7. Parameters for Spreadsheet types (ods, xslm, xls, xlsx)
	20.8. Parameters for HTML export
	20.9. Parameters for JSON export
	20.10. Compressing export files
	20.11. Examples
	20.11.1. Simple plain text export
	20.11.2. Exporting multiple tables
	20.11.3. Export based on a SELECT statement
	20.11.4. Export a complete schema
	20.11.5. Export as SQL INSERT script
	20.11.6. Exporting LOB data
	20.11.7. Replace data during export

	21. Import data using WbImport
	21.1. Importing spreadsheet files
	21.2. General parameters
	21.3. Parameters for the type TEXT
	21.4. Text Import Examples
	21.4.1. Importing date columns
	21.4.2. Excluding input columns from the import
	21.4.3. Importing a file with fixed column widths
	21.4.4. Filtering rows during import
	21.4.5. Importing several files
	21.4.6. Storing the name of the source file
	21.4.7. Populating columns from the database

	21.5. Parameters for the type XML
	21.6. Parameters for spreadsheet import
	21.7. Update mode
	21.8. Native UPSERT mode
	21.9. Native insertIgnore mode

	22. Copy data across databases
	22.1. General parameters for the WbCopy command.
	22.2. Copying data from one or more tables
	22.3. Copying data based on a SQL query
	22.4. Update mode
	22.5. Synchronizing tables
	22.6. Examples
	22.6.1. Copy one table to another where all column names match
	22.6.2. Synchronize the tables between two databases
	22.6.3. Copy only selected rows
	22.6.4. Copy data between tables with different columns
	22.6.5. Copy data based on a SQL query

	23. Comparing databases
	23.1. Compare two database schemas - WbSchemaDiff
	23.2. Compare data across databases - WbDataDiff

	24. Search data and code in the database
	24.1. Search source of database objects - WbGrepSource
	24.2. Search data in multiple tables - WbGrepData
	24.2.1. Examples
	Search for a specific value in a single table
	Search for a specific value in all tables
	Search for a specific value at the beginning of a column value
	Search for a specific value with an exact match
	Search for patterns
	Search for multiple values

	25. SQL Workbench/J to generate DDL commands
	25.1. Generate DROP statement with dependencies - WbGenerateDrop
	25.2. Generate SQL script for database objects - WbGenerateScript
	25.3. Generate SQL script for foreign key constraints - WbGenerateFKScript
	25.4. Generate a table definition from an import file - WbGenerateImpTable
	25.5. Show the source of a table - WbTableSource
	25.6. Show the source of a view - WbViewSource
	25.7. Show the source of a stored procedures - WbProcSource
	25.8. Show the source of a trigger - WbTriggerSource
	25.9. Generate DELETE statements with dependencies - WbGenerateDelete
	25.9.1.

	26. Show information about database objects
	26.1. Create a report of the database objects - WbSchemaReport
	26.2. Show table structure - DESCRIBE
	26.3. List tables - WbList
	26.4. List indexes - WbListIndexes
	26.5. List stored procedures - WbListProcs
	26.6. List triggers - WbListTriggers
	26.7. List catalogs - WbListCat
	26.8. List schemas - WbListSchemas

	27. Manage macros with SQL Workbench/J command
	27.1. Define a new macro - WbDefineMacro
	27.2. Delete a macro - WbDeleteMacro
	27.3. List available macros - WbListMacros

	28. Manage variables with SQL Workbench/J
	28.1. Define a script variable - WbVarDef
	28.2. Delete a script variable - WbVarDelete
	28.3. Show defined script variables - WbVarList

	29. Other SQL Workbench/J specific commands
	29.1. Confirm script execution - WbConfirm
	29.2. Display a message box - WbMessage
	29.3. Print a text - WbEcho
	29.4. Run a stored procedure with OUT parameters - WbCall
	29.5. Execute a SQL script - WbInclude (@)
	29.5.1. Examples

	29.6. Conditional execution
	29.7. Extract and run SQL from a Liquibase ChangeLog - WbRunLB
	29.8. Handling tables or updateable views without primary keys
	29.8.1. Define primary key columns - WbDefinePK
	29.8.2. List defined primary key columns - WbListPKDef
	29.8.3. Load primary key mappings - WbLoadPKMap
	29.8.4. Save primary key mappings - WbSavePKMap

	29.9. Change the default fetch size - WbFetchSize
	29.10. Run statements as a single batch - WbStartBatch, WbEndBatch
	29.11. Extracting BLOB content - WbSelectBlob
	29.12. Control feedback messages - WbFeedback
	29.13. Setting connection properties - SET
	29.13.1. FEEDBACK
	29.13.2. AUTOCOMMIT
	29.13.3. MAXROWS

	29.14. Changing Oracle session behavior - SET
	29.14.1. SERVEROUTPUT
	29.14.2. AUTOTRACE

	29.15. Changing read only mode - WbMode
	29.16. Count rows for all tables - WbRowcCount
	29.17. Change the connection for a script - WbConnect
	29.17.1. By specifying a profile
	29.17.2. By specifying a simple connection string
	29.17.3. By specifying all connection attributes

	29.18. Show the history of SQL statements - WbHistory
	29.19. Run an XSLT transformation - WbXslt
	29.20. Running operating system commands - WbSysExec
	29.21. Opening a file with the default application - WbSysOpen
	29.22. Change an internal configuration parameter - WbSetConfig

	30. DataPumper
	30.1. Overview
	30.2. Selecting source and target connection
	30.3. Copying a complete table
	30.3.1. Mapping source to target columns
	30.3.2. Restricting the data to be copied
	30.3.3. Deleting all rows from the target table
	30.3.4. Continuing when an insert fails
	30.3.5. Committing changes
	30.3.6. Batch execution
	30.3.7. Update mode

	30.4. Advanced copy tasks
	30.4.1. Populating a column with a constant
	30.4.2. Creating the target table
	30.4.3. Using a query as the source

	31. Database Object Explorer
	31.1. Objects tab
	31.2. Table details
	31.3. Modifying the definition of database objects
	31.3.1. Changing the table definition
	31.3.2. Renaming objects

	31.4. Table data
	31.5. Changing the display order of table columns
	31.6. Customize data retrieval
	31.7. Customizing the generation of the table source
	31.8. View details
	31.9. Procedure tab
	31.10. Search table data
	31.10.1. Server side search
	31.10.2. Client side search

	32. Working with the Database Object tree
	32.1. Filtering the elements in the tree
	32.2. Drag and drop support
	32.2.1. Dropping elements into the SQL editor
	32.2.2. Displaying a table's data

	32.3. Finding elements in the tree
	32.4. Features available through the context menu

	33. Common problems
	33.1. The driver class was not found
	33.2. Syntax error when creating stored procedures
	33.3. The SQL source code for tables or indexes is incorrect
	33.4. Timestamps with timezone information are not displayed correctly
	33.5. Some of the dialogs are too small
	33.6. Excel export not available
	33.7. Out of memory errors
	33.8. High CPU usage when executing statements
	33.9. The GUI freezes when displaying menus or context menus

	34. Common DBMS problems
	34.1. Oracle
	34.1.1. No Views or tables visible in the DbExplorer
	34.1.2. Error: "Stream has already been closed"
	34.1.3. BLOB support is not working properly
	34.1.4. Table and column comments are not displayed
	34.1.5. Time for DATE columns is not displayed
	34.1.6. Content of XMLTYPE columns is not displayed
	34.1.7. Error: "missing mandatory parameter"

	34.2. MySQL
	34.2.1. INFORMATION_SCHEMA tables not displayed in DbExplorer
	34.2.2. "Operation not allowed" error message
	34.2.3. Problems with zero dates with MySQL
	34.2.4. The SQL source for views is not displayed
	34.2.5. No table comments are displayed in the DbExplorer

	34.3. Microsoft SQL Server
	34.3.1. The value of DATE columns is not correct
	34.3.2. Column and table comments are not displayed
	34.3.3. Using Windows authentication to connect to a SQL Server
	34.3.4. The Microsoft Driver throws an Exception when using SET SHOWPLAN_ALL
	34.3.5. Dealing with locking problems
	34.3.6. Can't start a cloned connection while in manual transaction mode
	34.3.7. WbExport or WbCopy using a lot of memory
	34.3.8. Sequences are incremented twice

	34.4. IBM DB2
	34.4.1. Date values are not displayed
	34.4.2. "Connection closed" errors
	34.4.3. XML columns are not displayed properly in the DbExplorer
	34.4.4. No error text is displayed
	34.4.5. Displaying column headers instead of column names in result sets.
	34.4.6. Column or table comments are not displayed
	34.4.7. DB2 commands like REORG cannot be run

	34.5. PostgreSQL
	34.5.1. WbExport or WbCopy using a lot of memory

	34.6. Sybase SQL Anywhere
	34.6.1. Columns with type nvarchar are not displayed properly

	35. Options dialog
	35.1. General options
	35.2. Editor options
	35.3. SQL Excecution options
	35.4. Macro options
	35.5. Bookmark options
	35.6. Editor colors
	35.7. Font settings
	35.8. Auto-completion options
	35.9. Workspace options
	35.10. Options for displaying data
	35.10.1. Column width settings
	35.10.2. Row height settings

	35.11. Options for formatting data
	35.12. Data display colors
	35.13. Options for data editing
	35.14. DbExplorer options
	35.14.1. General options
	35.14.2. Object list options
	35.14.3. SQL Generation options
	35.14.4. Data display options

	35.15. Window Title
	35.16. SQL Formatting
	35.17. External SQL Formatter
	35.18. SQL Generation
	35.19. External tools
	35.20. Look and Feel

	36. Configuring keyboard shortcuts
	36.1. Assign a shortcut to an action
	36.2. Removing a shortcut from an action
	36.3. Reset to defaults

	37. Advanced configuration options
	37.1. DBID
	37.2. GUI related settings
	37.3. Editor related settings
	37.4. Controlling code generation for code snippets
	37.5. DbExplorer Settings
	37.6. General configuration settings
	37.7. Database related settings
	37.8. Configuring the check for the update table
	37.9. DBMS specific settings
	37.9.1. Oracle specific settings
	37.9.2. Microsoft SQL Server specific settings

	37.10. SQL Execution related settings
	37.11. Default settings for Export/Import
	37.12. Controlling the log file
	37.12.1. Configure internal logging

	37.13. Configure Log4J logging
	37.13.1. Turn on Log4J logging

	37.14. Configuring the logfile viewer
	37.15. Settings related to SQL statement generation
	37.16. Customize table source retrieval
	37.17. Customize index source retrieval
	37.18. Filter settings

	38. Simple properties based profile storage
	Index

